期刊文献+

具有随机弹性模量的平面弹性模型的双线性有限元解法 被引量:1

Stochastic bilinear finite element method for plane elasticity equations with stochastic modulus
原文传递
导出
摘要 本文针对随机平面线弹性问题,采用Neumann级数展开构造随机有限元方法.首先利用Karhunen-Loève展开对随机系数进行有限维逼近,把随机模型转换为确定性参数的问题.其次,在空间上采用矩形剖分的双线性有限元来离散位移.最后,文章给出了收敛性分析,并通过数值算例验证了理论结果. The bilinear finite element with Neumann expansion is used for the model of stochastic plane elasticity. By using the Karhunen-Loeve expansion to approximate the elasticity modulus, the original model changes into a deterministic parametric problem. In the space direction,the bilinear finite element is used to approximate the displacement. Convergence is analyzed. Numerical experiments are done to confirm the theoretical results.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第4期675-680,共6页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(11171239)
关键词 随机平面弹性模型 Karhunen-Loève展开 Neumann展开 stochastic plane elasticity Karhunen-Loève expansion Neumann expansion
  • 相关文献

参考文献12

  • 1Niederreiter H, Hellekalek P,Larcher G,et al. Monte carlo and quasi-Monte Carlo methods [M]. New York: Springer-Verlag, 1998. 被引量:1
  • 2Kleiber M, Hien T D. The stochastic finite element method [M]. New York:John Wiley,1992. 被引量:1
  • 3Sudret B, Kiureghian A D. Stochastic finite element methods and reliability., a state of the art report [R]. Srtuctural Engineering Mechanics and Matherials: UCB/SEMM, 2000. 被引量:1
  • 4Deb M K, Babuska I,Oden J T. Solution of stochas- tic partial differential equations using Galerkin finite element techniques [J]. Comput Methods Appl Mech Engrg, 2001,190 : 6359. 被引量:1
  • 5Babusa I, Tempone R,Zouraris G E. Galerkin finite element approximations of stochastic ellptic partial diffrential equations [J]. SIAM J,2004,42(2): 800. 被引量:1
  • 6Babuska I,Tempone R,Zourarids G E. Solving ellipi- tie boundary value problems with uncertain eoeff-cients by the finite element method: the stochastic formulation [J]. Comput Methods Appl Mech En- grg, 2005,194 : 1251. 被引量:1
  • 7Matthies H G,Keese A. Galerkin methods for linear and nonlinear elliptic stochastic partial differential e- quations [J]. Comput Methods Appl Mech Engrg, 2005,194:1295. 被引量:1
  • 8Kami nski M. Generalized perturbation-based sto- chastic finite element method in elastostatics [J]. Computera and Structures, 2007,85 : 586. 被引量:1
  • 9Schwab C, Todor R A. Karhunen-loeve approxima- tion of random fields in domains by generalized fast multipole methods [J]. J Comp Phys,2006,217:100. 被引量:1
  • 10Brenner S C,Scott L R. The mathematical theory of the finite element methods [M]. Berlin: Springer- Verlag,2008. 被引量:1

二级参考文献12

共引文献4

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部