摘要
本文针对随机平面线弹性问题,采用Neumann级数展开构造随机有限元方法.首先利用Karhunen-Loève展开对随机系数进行有限维逼近,把随机模型转换为确定性参数的问题.其次,在空间上采用矩形剖分的双线性有限元来离散位移.最后,文章给出了收敛性分析,并通过数值算例验证了理论结果.
The bilinear finite element with Neumann expansion is used for the model of stochastic plane elasticity. By using the Karhunen-Loeve expansion to approximate the elasticity modulus, the original model changes into a deterministic parametric problem. In the space direction,the bilinear finite element is used to approximate the displacement. Convergence is analyzed. Numerical experiments are done to confirm the theoretical results.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2013年第4期675-680,共6页
Journal of Sichuan University(Natural Science Edition)
基金
国家自然科学基金(11171239)