期刊文献+

基于对称差分和特征匹配的纱线运动疵点实时检测

Real-time defect detection based on symmetric difference and component match for high-speed moving yarn
下载PDF
导出
摘要 针对纱线高速运动时无法实时准确检测疵点的问题,提出了一种高速纱线的实时疵点检测算法,该算法适用于实时处理大容量图像和高速移动纱线疵点检测。该算法通过将对称差分算法和连通域特征匹配方法相结合,提高了纱线疵点检测准确性,同时缩短了处理时间。首先对图像进行了预处理,再使用对称差算法分解疵点图像并提取了图像疵点特征,然后使用连通域特征匹配方法识别了疵点。改进了传统差分算法无法抗抖动缺点,比较完整地保留了疵点信息,构造了识别能力特别强的特征匹配方法。最后,将该算法疵点检测的准确性和检测速度与现有检测方法进行了对比分析。研究结果表明,该算法在准确性方面优于人工检测及传统差分算法,检测速度相对神经网络和传统差分算法有所提高,该算法能够在实现实时、快速检测疵点的同时保证检测疵点检测的准确性。 Aiming at the problems of a real-time defect detection algorithm for high-speed yarn, this algorithm was used to solve the defect problem of real-time to accurately detecting. The algorithm was suitable for real-time processing of large-volume image and high-speed moving yarn defect detection. By the symmetrical differencing algorithm and connected component matching, the algorithm was combined to improve the yarn defect detection accuracy while reducing processing time. Firstly, image needed preprocessing, then images were decomposed and extracted by using symmetrical differencing algorithm, and then, defects were recognized by using the connected component. The shortcoming of anti-tremble of the traditional differential algorithm was improved. Component matching method with particularly strong ability of identifying was constructed. Finally, the algorithm's defect detection accuracy and detection speed were compared with existing detection methods analysis. The results indicate that this algorithm is better than manual detection and traditional algorithms, detection speed relative to the neural network and the traditional algorithms has been improved. It is considered that the algorithm is able to achieve real-time rapid detection of defects at the same time ensure the detection accuracy of defect detection.
出处 《机电工程》 CAS 2013年第8期1010-1014,1019,共6页 Journal of Mechanical & Electrical Engineering
基金 浙江省重点科技创新团队资助项目(2010R50008)
关键词 疵点检测 实时处理 高速移动纱线 对称差分算法 连通域特征 defect detection real-time processing high-speed moving yarn symmetrical differencing algorithm connected component
  • 相关文献

参考文献10

  • 1周绚丽,成玲.计算机图像处理技术在纱线质量检测中的应用[J].纺织科技进展,2008(1):32-34. 被引量:6
  • 2CAVAN R A. Improved tracking and data fusion through sensor management and control[C]//Proceeding on Data Fu- sion Symposium. Monterey, Califonia, USA: [s.n.], 1987: 66-65. 被引量:1
  • 3KANG Ge-wen, LIU Hong-bing. Surface defects inspection of cold rolled strips based on neural network [C]//Machine Learning and Cybernetics, Proceedings of 2005 Internation- al Conference. Chengdu : [ s.n. ], 2005 : 5034-5037. 被引量:1
  • 4JAYANTA K, CHANDRA, ASIT K, et al. Detection of de- fects in fabrics using subimage-basedsingular value decom- position [J]. Journal of The Textile Institute, 2012, 104 (3) : 295 -304. 被引量:1
  • 5张恒,胡文龙,丁赤飙.基于快速连通域分析的目标特征提取算法[J].计算机工程与应用,2009,45(29):230-232. 被引量:12
  • 6LIN Jie, LUO Si-wei, LI Qing-yong, et al. Real-time rail head surface defect detection: A geometrical approach[C]// Industrial Electronics 2009, ISIE 2009,.IEEE International Symposium. Beijing: [ s.n. ], 2009: 769-774. 被引量:1
  • 7ZHANG Wu-yi, ZHAO Qiang-song, LIAO Liang. Develop-ment of a real-time machine vision system for detecting de- feats of cord fabrics [C]// Computer Application and Sys- tem Modeling (ICCASM), 2010 International Conference. Taiyuan: [s.n.],2010:539-543. 被引量:1
  • 8肖术骏,朱学峰.一种改进的快速高效的差分进化算法[J].合肥工业大学学报(自然科学版),2009,32(11):1700-1703. 被引量:13
  • 9许小健,黄小平,钱德玲.自适应加速差分进化算法[J].复杂系统与复杂性科学,2008,5(1):87-92. 被引量:23
  • 10王强..运动物体检测与跟踪研究及系统实现[D].上海交通大学,2011:

二级参考文献44

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部