摘要
Lagrange函数在确定系统的能量函数及Hamilton实现中起着重要的作用。在分析力学中满足Lagrange方程的自伴随条件要求系统阶数是偶数的,但常用的发电机模型往往采用单轴3阶模型,为此首先将奇数阶电力系统模型延拓为偶数阶系统,通过坐标变换与广义力方法推导出可实现Lagrange化的自伴随条件以及系统相应的Hamilton函数,然后给出多机电力系统Hamilton实现的标准形式。运用非保守分析力学的基本原理以及电力系统的状态反馈控制律,设计出多机电力系统的稳定控制律,使得系统在平衡点邻域内趋于渐近稳定。运用推导的控制器对IEEE 3-9标准节点系统进行Matlab编程仿真,研究了三相接地短路故障下所设计控制器的控制效果,验证了所提控制策略的有效性。
Lagrange function plays an important role in determining the energy function and Hamilton realization of system. However, to satisfy the self-adjoint conditions of Lagrange equations in analytical mechanics method, the order of system is required to be even, however the frequently used generator model is often the uni-axial third-order form. For this reason, firstly the odd-order power system is expanded to even-order one, and through coordinate transformation and generalized forces, the self-adjoint conditions of Lagrangian process can be realized, and the Hamilton realization is derived, and then the standard form of Hamilton realization for multi-machine power system is given. Utilizing fundamental principle of non-conservative analytical mechanics and the state feedback control strategy of power system, a stability control strategy for multi-machine power system is designed to make the power system tending to asymptotic stability within the neighborhood of equilibrium point: Applying the derived controller to IEEE 3-machine 9-bus system simulated on Matlab platform, the control effect of designed controller is investigated under the condition of three-phase ground fault, thus the validity of the proposed control strategy is verified.
出处
《电网技术》
EI
CSCD
北大核心
2013年第9期2486-2491,共6页
Power System Technology
基金
国家自然科学基金项目(61074042)~~