期刊文献+

自适应多特征融合的真实感地形快速绘制 被引量:2

Fast rendering of realistic terrain based on adaptive multiple features fusion
原文传递
导出
摘要 针对真实地形可视化中数字高程模型(DEM)数据结构复杂且绘制速度不佳的问题,提出一种基于自适应多特征融合的真实感地形快速绘制方法。引入地形高程熵,对真实的DEM高程数据进行特征提取以生成地形总体框架;利用随机中点位移分形算法并根据地形特征优化分形参数来增加地形高频细节;计算视点与地形之间的距离阈值,并对应于层次细节(LOD)等级,以实现地形自适应的调度,再根据不确定性判定因子对地形特征进行更新。最后对本文算法进行并行处理,充分利用图形处理单元(GPU)技术对地形进行加速绘制。实验结果表明,该方法生成的地形具有较高逼真度和较好实时性。 Focusing on the complex data structure of digital elevation model (DEM) and the poor rendering speed in real terrain visualization, we propose a fast rendering method based on adaptive multi-feature fusion for realistic terrains. To introduce the entropy of terrain elevation, real DEM elevation data can be extracted for generating an overall framework. According to the random midpoint displacement fractal algorithm and optimized fractal parameters, the high frequency detail can be increased. To calculate the distance threshold between the viewpoint and the terrain, this corresponds to the level of details (LOD), so that it can achieve adaptive scheduling. Additionally, by using the uncertainty determinant factor, the characteristics of the terrain profile can be updated. Finally, the algorithm is carried out using parallel processing, taking full advantage of the graphic processing unit (GPU) for accelerating the terrain rendering. The experimental results show that the generated terrain has higher fidelity and better real-time capabilily.
出处 《中国图象图形学报》 CSCD 北大核心 2013年第6期724-729,共6页 Journal of Image and Graphics
基金 水下信息处理与控制国家重点实验室基金项目(9140C2305041001)
关键词 自适应 多特征融合 真实感地形 快速绘制 层次细节(LOD) adaptive multiple features fusion fractal terrain fast rendering level of details (LOD)
  • 相关文献

参考文献11

二级参考文献84

共引文献130

同被引文献25

  • 1卞海红,王峰.基于三维GIS的地形可视化研究及实现[J].计算机技术与发展,2006,16(7):230-232. 被引量:6
  • 2Vfizquez P P,Feixas M, Sbert M,et al.Viewpoint selec- tion using viewpoint entropy[C]//Proceedings of Vision Modeling and Visualization Conference.Augsburg: Aka GmbH, 2001 : 273-280. 被引量:1
  • 3V~zquez P P, Feixas M, Sbert M, et al.Automatic view selection using viewpoint entropy and its application to image-based modelling[J].Computer Graphics Forum, 2003, 22(4) :689-700. 被引量:1
  • 4V~zquez P P, Feixas M, Sbert M, et al.Realtime automatic selection of good molecular views[J].Computers and Graphics, 2006,30 ( 1 ) : 98-110. 被引量:1
  • 5Pluim J P W, Maintz J B A, Viergever M A.Image regi- stration by maximization of combined mutual informa- tion and gradient information[J].IEEE Transactions on Medical Imaging, 2000,19 (8) : 809-814. 被引量:1
  • 6Kierstad D, Delbalzo D.A genetic algorithm applied to planning search paths in complicated environments[J]. Military Operations Research, 2003,8 (2) : 45-59. 被引量:1
  • 7Beheshti Z, Shamsuddin S M.Non-parametric particle swarm optimization for global optimization[J].Applied Soft Computing, 2015,28 : 345-359. 被引量:1
  • 8Mangat V, Vig R.Novel associative classifier based on dynamic adaptive PSO: application to determining can- didates for thoracic surgery[J].Expert Systems with Ap- plications,2014,41 (18) : 8234-8244. 被引量:1
  • 9Biswas D K,Panja S C,Guha S.Multi objective optimi- zation method by PSO[J].Procedia Materials Science, 2014,6: 1815-1822. 被引量:1
  • 10Takahashi S, Fujishiro I, Takeshima Y, et al.A feature- driven approach to locating optimal viewpoints for vol- ume visualization[C]//Proceedings of the 16th IEEE Visuali- zation 2005, Washington, DC, USA, 2005 ~ 495-502. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部