期刊文献+

基于小波分析的双阈值火焰彩色图像增强方法 被引量:1

Dual-threshold Method of Flame Color Image Enhancement Based on Wavelet Analysis
下载PDF
导出
摘要 基于CCD的火焰图像监控技术是锅炉燃烧控制的研究热点,该方法的关键环节是获取清晰可靠的火焰彩色图像。针对这一需求,本文采用小波分析双阈值法对火焰彩色图像进行增强,首先将彩色图像分解成RGB三个二维信号,再分别对其进行小波变换,将得到的小波系数采用双阈值法进行提升和缩小以达到增强和去噪的目的,再进行小波重构,之后将新的RGB二维信号重新组合得到增强后的彩色火焰图像。实验表明:采用该方法增强后,图像层次感较强,细节突出,火焰各燃烧区域区分明显;二维温度场测量精度提高了0.62%,绝对误差降低了5.3℃,有利于改善整个锅炉燃烧系统的控制性能。 The flame image monitoring technology based on CCD is a research focus of the boiler combustion control,and the key of this method is to obtain a clear and reliable flame color image.In response to this demand,wavelet analysis and dual-threshold method are used to enhance flame color image.Firstly,the color image is decomposed into three two-dimensional RGB signals.Secondly,the RGB signals are processed through wavelet transform respectively,and those wavelet coefficients are amplified and reduced using dual-threshold method for the purpose of enhancement and denoising.Then,the new RGB signals are reconstructed by those wavelet coefficients.At last,the new RGB signals are regrouped to get enhanced flame color image.Experimental results show that,after processed by this method,the image has a strong sense of hierarchy,detail of image is outstanding and the distinction of the combustion zone of the flame is obvious.Moreover,measurement precision of two-dimensional temperature field is improved by 0.62% and the absolute error is reduced by 5.3℃.This is helpful to improve the performance of the boiler combustion control system.
出处 《光电工程》 CAS CSCD 北大核心 2013年第6期91-96,共6页 Opto-Electronic Engineering
基金 国家自然科学基金(20976193) 国家重大专项(2011ZX05021-003) 中国石油大学(北京)基本科研基金资助
关键词 彩色图像增强 小波分析 双阈值 温度场 color image enhancement wavelet analysis dual-threshold temperature field
  • 相关文献

参考文献7

二级参考文献30

  • 1沈模卫,刘颖,李胜明.颜色知觉恒常理论的回顾[J].应用心理学,1999,5(1):55-60. 被引量:5
  • 2黄凯奇,吴镇扬,王桥.色彩恒常性在彩色图像增强中的应用[J].应用科学学报,2004,22(3):322-326. 被引量:10
  • 3Meylan L, Susstrunk S. High dynamic range image rendering with a retinex-based adaptive filter [ J ]. IEEE Transactions on Image Processing, 2006, 15 (9) : 2820 - 2830. 被引量:1
  • 4Funt B, Ciurea F, McCann J. Retinex in MATLAB[J]. Journal of Electronic Imaging, 2004, 13( 1 ) : 48 -57. 被引量:1
  • 5Kimmel R, Elad M, Shaked D, et al. A variational framework for Retinex [ J ]. International Journal of Computer Vision, 2003, 52(1) : 7 -23. 被引量:1
  • 6Li Tao, Asari V K. A Robbust Image Enhancement Technique for hnproving Image Visual Quality in Shadowed Scenes[M]//Leow W K, Lew M S, Chua T S, et al. Image and video retrieval : 14th international conference, CIVR 2005, Singapore, July 20- 22, 2005; proceedings. Berlin: Springer, 2005, 395 -404. 被引量:1
  • 7Webster M A. Human colour perception and its adaptation [J]. Network: Computation in Neural Systems, 1996, 7 (4) : 587 -634. 被引量:1
  • 8Candes E J, Demanet L, Donoho D L. Fast discrete curvelet transforms [ R ]. Applied and Computational Mathematics, California Institute of Technology,2005 : 1 - 43. 被引量:1
  • 9Starck J L,candes E,Donoho D. The Curvelet Transform for Image Denoising [ J ]. IEEE Trans, Image processing,2002 ( 11 ) :670 - 684. 被引量:1
  • 10BRIESE C. Three-dimensional modelling of breaklines from airborne Laser scanner data[ J ]. International Archives of phortograrnmetry Remote sensing and spatial Information sciences, 2004, 35 ( 3 ) : 1097 - 1102. 被引量:1

共引文献45

同被引文献15

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部