期刊文献+

自由飞行昆虫运动变形测量中弱光条提取

Extracting for central points of weak stripes of measuring kinetic deformation of free-fly insect
原文传递
导出
摘要 通过分析昆虫自由飞行状态下结构光光条图像的特点,提出了一种用于提取昆虫运动变形测量中弱光条中心点的图像处理方法。该方法根据图像的灰度分布情况对图像进行分块,采用小波理论对图像消噪,利用模糊增强和小波同态滤波相结合的算法增强各图像的弱光条信号,再应用steger算法提取弱光条中心点的亚像素位置。给出几种算法实验结果的比较和分析,表明该方法成功实现了弱光条信号中心点的提取,并有效抑制了噪声和干扰。 An image processing method for extracting central points of weak stripes for the measurement of kinetic deformation of free-fly insect wings was proposed by analyzing the characteristic of structured-light-stripe image. With the method, sub-pixel position of weak strips central points were extracted with steger algorithm by dividing the image according to gray value distributing at first, then eliminating noise using wavelet theory, finally enhancing weak strips of each image using fuzzy enhancement and wavelet homomorphic filtering methods. Experimental result was compared with other methods and analyzed. The proposed approach extracts weak strips central points successfully, and restrains noise and interference efficiently.
出处 《光学技术》 EI CAS CSCD 北大核心 2007年第3期341-344,共4页 Optical Technique
基金 国家杰出青年科学基金资助项目(50125518)
关键词 图像处理 结构光 模糊增强 小波同态滤波 光条提取 image processing structured-light fuzzy enhancement wavelet homomorphic filtering stripes extraction
  • 相关文献

参考文献7

二级参考文献84

  • 1[9]You Yuli, Kaveh D. Fourth-order partial differential equations for noise removal[J]. IEEE Trans. Image Processing, 2000,9(10):1723~1730. 被引量:1
  • 2[10]Bouman C, Sauer K. A generalized Gaussian image model of edge preserving map estimation[J]. IEEE Trans. Image Processing, 1993,2(3):296~310. 被引量:1
  • 3[11]Ching P C, So H C, Wu S Q. On wavelet denoising and its applications to time delay estimation[J]. IEEE Trans. Signal Processing,1999,47(10):2879~2882. 被引量:1
  • 4[12]Deng Liping, Harris J G. Wavelet denoising of chirp-like signals in the Fourier domain[A]. In:Proceedings of the IEEE International Symposium on Circuits and Systems[C]. Orlando USA, 1999:Ⅲ-540-Ⅲ-543. 被引量:1
  • 5[13]Gunawan D. Denoising images using wavelet transform[A]. In:Proceedings of the IEEE Pacific Rim Conference on Communications, Computers and Signal Processing[C]. Victoria BC,USA, 1999:83~85. 被引量:1
  • 6[14]Baraniuk R G. Wavelet soft-thresholding of time-frequency representations[A]. In:Proceedings of IEEE International Conference on Image Processing[C]. Texas USA,1994:71~74. 被引量:1
  • 7[15]Lun D P K, Hsung T C. Image denoising using wavelet transform modulus sum[A]. In:Proceedings of the 4th International Conference on Signal Processing[C]. Beijing China,1998:1113~1116. 被引量:1
  • 8[16]Hsung T C, Chan T C L, Lun D P K et al. Embedded singularity detection zerotree wavelet coding[A].In:Proceedings of IEEE International Conference on Image Processing[C]. Kobe Japan, 1999:274~278. 被引量:1
  • 9[17]Krishnan S, Rangayyan R M. Denoising knee joint vibration signals using adaptive time-frequency representations[A]. In:Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering 'Engineering Solutions for the Next Millennium[C]. Alberta Canada, 1999:1495~1500. 被引量:1
  • 10[18]Liu Bin, Wang Yuanyuan, Wang Weiqi. Spectrogram enhancement algorithm: A soft thresholding-based approach[J]. Ultrasound in Medical and Biology, 1999,25(5):839~846. 被引量:1

共引文献287

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部