期刊文献+

基于Hadoop的海量电能质量监测数据分析平台研究 被引量:4

Study on Massive Power Quality Monitoring Data Analysis Platform Based on Hadoop
下载PDF
导出
摘要 随着电力系统规模的不断扩大,对电能质量要求的不断提高,涌现出海量的电能质量监测数据,这对现有的电能质量分析计算平台带来了挑战。如何对海量电能质量监测数据进行可靠快速的处理成为电能质量分析中的重要问题。本文利用分布式计算在处理海量数据方面的优势,基于Hadoop分布式技术设计开发了一个电能质量监测数据分析平台,同时结合Hadoop和关系型数据库各自的特点,不仅提升了平台性能,而且使平台可以较为方便的整合到现有的电能质量监测系统中,以增强现有系统的计算能力。 With the constant expansion of the power system,power quality requirements continue to increase.The emergence of a massive power quality monitoring data brings Challenges for existing power quality analysis platform.How to process the massive monitoring data quickly and reliably becomes an important issue in the analysis of power quality.This paper takes advantage of the distributed computing in the massive data processing,designs and develops a massive power quality monitoring data analysis platform based on Hadoop.The Platform Combined with the relational database,not only to enhance the platform performance,but also make the platform can integrate more easily into existing power quality monitoring system,to strengthen the existing system.
出处 《中国科技信息》 2013年第13期79-80,共2页 China Science and Technology Information
关键词 海量数据 HADOOP MAPREDUCE 电能质量 massive data Hadoop mapReduce power quality
  • 相关文献

参考文献5

二级参考文献35

  • 1王海东,禹成七,王黎冬.电能质量在线监测系统的研究[J].华北电力大学学报(自然科学版),2004,31(4):29-31. 被引量:14
  • 2WEI Q, FLUECK A J, FENG T. A new parallel algorithm for security constrained optimal power flow with a nonlinear interior point method// Proceedings of IEEE PES General Meeting, July 12-15, 2005, San Francisco, CA, USA: 447- 453. 被引量:1
  • 3LIANG C H, CHUNG C Y, WONG K P, et al. Parallel optimal reactive power flow based on cooperative co- evolutionary differential evolution and power system decomposition. IEEE Trans on Power Systems, 2007, 22(1):249-257. 被引量:1
  • 4ALI M, DONG Z Y, LI X, et ah A grid computing based approach for probabilistic load flow analysis// Proceedings of IET International Conference on Advances in Power System Control, Operation 'and Management, October 30-November 2, 2006, Hong Kong, China. 被引量:1
  • 5WANG H, LIU Y. Power system restoration collaborative grid based on grid computing environment// Proceedings of IEEE PES General Meeting, July 12 16, 2005, San Francisco, CA, USA: 644-649. 被引量:1
  • 6ZHOU H F, WU F F, NI Y X. Design for grid service-based future power system control centers// Proceedings 05 IET International Conference on Advances in Power System Control, Operation and Management, October 30-November 2, 2006, Hong Kong, China. 被引量:1
  • 7TAYLOR G A, IRVING M R, HOBSON P R, et al. Distributed monitoring and control of future power systems via grid computing// Proceedings of IEEE PES General Meeting, June 17-23, 2006, Montreal, Canada. 被引量:1
  • 8ZHANG P, LEE T, SOBAJIC D. Moving toward probabilistic reliability assessment methods// Proceedings of Eighth International Conference on Probabilistic Methods Applied to Power Systems, September 12-14, 2004, Ames, IA, USA: 906- 913. 被引量:1
  • 9BILLINTON R, LI W. Reliability assessment of electric power systems using Monte Carlo methods. New York, NY, USA: Plenum Press, 1994. 被引量:1
  • 10ALI M,DONG Z Y, LI X, et al. RSA-grid: a grid computing based framework for power system reliability and security analysis// Proceedings of IEEE PES General Meeting, June 17-23, 2006, Montreal, Canada. 被引量:1

共引文献602

同被引文献19

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部