摘要
许多实际被控对象往往是大系统中的一个非线性微分-代数子系统。对于指数1且关联可测的非线性微分-代数子系统,分两步给出了其反步镇定控制方法,并应用于电力系统元件分散控制。第一步提出了非线性微分-代数子系统的一致相对阶概念,给出了模型等价转化的条件,将非线性微分-代数子系统模型等价转化为"受限"非线性常微分方程系统模型。第二步基于等价模型,利用反步控制方法构造出控制器,使得闭环系统渐近稳定。最后研究了多机电力系统中的同步发电机汽门控制功角问题并进行了仿真,仿真结果表明了所提方法的有效性。
Many physical systems are usually nonlinear differential-algebraic equation sub-systems within large-scale systems. For nonlinear differential-algebraic equation sub-systems whose index is one and interconnection is local measurable, the backstepping stabilization control is studied through two steps. Meanwhile the result is applied to components decentrlized control of the power system. In the first step, the geometric condition of equivalent model transformation is presented, through which the nonlinear differential-algebraic equation sub-system model is transformed equivalently into “constrained” nonlinear ordinary differential equation system model. In the second step, the stabilization controller is constructed explicitly using backstepping method based on the equivalent model, with which all states of the closedloop systems are made asymptotically stable. Finally, a speed governor controller is designed for one synchronous generator within multi-machine power systems and the simulation is conducted. The simulation results demonstrate the effectiveness of the proposed control scheme.
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2013年第8期1736-1741,共6页
Systems Engineering and Electronics
基金
国家自然科学基金(51177019
61004001
61104103)
江苏省自然科学基金(BK2011826)
江苏政府留学奖学金
东南大学复杂工程系统测量与控制教育部重点实验室开放课题基金(MCCSE2012A07)资助课题
关键词
微分-代数系统
子系统
镇定
反步
电力系统
differential-algebraic equation systems
sub-systems
stabilization
backstepping
power system