摘要
首次提出了用于控制微分代数系统的反馈线性化技术理论和方法 ,类似于经典的微分几何理论中的定义和定理 ,给出关于微分代数系统的M导数、M括号等一些新的定义 ,并给出了有关微分代数系统控制的一系列新结果 ,进一步拓广了非线性系统几何理论的应用范围。考虑到大多数电力系统模型都是采用微分代数模型 ,而且电力系统的负荷往往是电压和频率的非线性表达式 ,另外在实际工程中也常基金项目 :国家重点基础研究发展规划项目 (G19980 2 0 30 0 ) ;中国博士后基金资助项目。ProjectSupportedbySpecialFundoftheNationalPriorityBasicResearch(G19980 2 0 30 0 ) .常遇到求非线性微分代数方程的最优控制解 ,引入微分代数系统的M导数、M括号等定义可较好地解决这类控制问题。利用控制微分代数系统的反馈线性化技术 ,能很好地应用于具有非线性负荷的电力系统非线性励磁控制的设计 。
In this paper,the theory and method of feedback linearization technique of controlling differential algebraic system are first presented.Some new definitions of M derivative, M bracket and etc.to differential algebraic systems are given,which is similar to the definitions and theorems in classical differential geometry theory,a series of new result to differential algebraic system control is given,which extend further the applied scope of nonlinear control system geometry theory.Because many power systems are modeled by differential algebraic model,and the loads of power systems are frequently the nonlinear expression of voltage and frequency,in addition,there are many problem of optimal control in practical engineering,these control problem above can be solved by using the M derivative, M bracket and so on.The designs of nonlinear excitation control of power systems with nonlinear loads can be applied by the feedback linearization technique of controlling differential algebraic systems,which make the differential geometry methods get more extensive application in the study of power system control.
出处
《中国电机工程学报》
EI
CSCD
北大核心
2001年第8期15-18,23,共5页
Proceedings of the CSEE
基金
国家重点基础研究发展规划项目 (G19980 2 0 30 0 )
中国博士后基金资助项目&&
关键词
电力系统
非线性控制
微分代数系统
数学模型
differential algebraic system
nonlinear load
power system
M derivative
M bracket.