期刊文献+

基于路网的LBSN用户移动轨迹聚类挖掘方法 被引量:9

LBSN user movement trajectory clustering mining method based on road network
下载PDF
导出
摘要 基于LBSN(基于位置的社交网络)中数据的地理和社交属性,结合用户轨迹和好友关系,有助于提高不确定轨迹聚类挖掘的效率。根据LBSN用户的好友关系特征,引入评分函数,对用户影响力进行排序,找出其中的活跃用户;在传统路网子轨迹匹配和对签到数据清理的基础上,加入子轨迹匹配准确性监测,并存储活跃用户匹配成功的路段,进而减少路网匹配时间。最后综合R*树的空间索引机制和DBSCAN聚类算法对城市内的热点路径进行挖掘。理论分析和实验表明,相比于已有方法,改进的的聚类挖掘方法在LBSN环境中的时间效率和准确性都有较大的提高,且有较好的可伸缩性。 The data in LBSN (location-based social network) have geographical and social attribute. It is helpful to improve the efficiency of uncertainly trajectory clustering mining combined with user' s trajectories and friendship. This paper presented a ranking function based on the feature of friends relationship to sort user' s effect and find the active users. Meanwhile, it in- troduced accuracy detection of the road network sub-trajectories to the process of network matching based on data reduction. Moreover, it stored the active users' correct matching ways to reduce the time complexity. Finally, it mined hot routes within the city by taking into account both R* tree spatial index mechanism and DBSCAN clustering algorithm. Theoretical analysis and experiment results show that compared to the existing method, the method has better stretchability, can get clustering result more accurately and efficiently in the LBSN environment.
出处 《计算机应用研究》 CSCD 北大核心 2013年第8期2410-2414,共5页 Application Research of Computers
基金 重庆市自然科学基金资助项目(CSTC2012jjA40014) 重庆邮电大学博士启动基金资助项目
关键词 社交网络 不确定轨迹 用户影响力 热点路径 social network uncertain trajectory user effect hot route
  • 相关文献

参考文献18

  • 1郭黎敏,丁治明,胡泽林,陈超.基于路网的不确定性轨迹预测[J].计算机研究与发展,2010,47(1):104-112. 被引量:15
  • 2LIAO Lin, FOX D, KAUTZ H. Extracting places and activities from GPS traces using hierarchical conditional random fields [ J]. interna- tional Journal of Robotics Research ,2007,26 ( 1 ) : 119-134. 被引量:1
  • 3ZHENG Yu, LIU Li-ke i WANG Long-hao, et al. Learning transporta- tion mode from raw gps data for geographic applications on the Web [ C ]//Pmc of the 17th International Conference on World Wide Web. New York : ACM Press,2008:247- 256. 被引量:1
  • 4LO C H,PENG W C,CHEN C W,et al. CarWeb:a traffic data collec- tion platform[ C ]//Proc of the 9th International Conference on Mobile Data Management. Washington DC : IEEE Computer Society, 2008 : 221- 222. 被引量:1
  • 5REDDY S, SHILTON K, DENISOV G, et al. Biketastie : sensing and mapping for better biking [ C]//Proc of SIGCHI Conference on Hu- man Factors in Computing Systems. New York : ACM Press, 2010 : 1817-1820. 被引量:1
  • 6郑宇,谢幸.基于用户轨迹挖掘的智能位置服务[J].中国计算机学会通讯,2010,6(6):23-30. 被引量:5
  • 7YOU Chuang-wen, WEI C C, CHEN Yu-han, et al. Convenience probe:a participatory sensing tool to collect large scale consumer flow behaviors[ C]//Pmc of the 12th ACM International Conference Ad- junct Papers on Ubiquitous Computing. New York: ACM Press, 2010:441-442. 被引量:1
  • 8PELEKIS N, KOPANAKIS I, KOTSIFAKOS E E, et al. Clustering trajectories of moving objects in an uncertain world[ C]//Prec of the 9th IEEE International Conference on Data Mining. 2009:417-427. 被引量:1
  • 9WEI Ling-yin, ZHENG Yu, PENG W C. Constructing popular routes from uncertain trajectories[ C]//Pmc of the 18th ACM SIGKDD In- ternational Conference on Knowledge Discovery and Data Mining. New York : ACM Press, 2012 : 195- 203. 被引量:1
  • 10PRAING R, SCHNEIDER M. Modeling historical and future move- ments of spatio-temporal objects in moving objects databases [ C ]// Proc of the 6th ACM Conference on Information and Knowledge Man- agement. New York :ACM Press ,2007 : 183-192. 被引量:1

二级参考文献25

  • 1陈继东,孟小峰,赖彩凤.基于道路网络的对象聚类[J].软件学报,2007,18(2):332-344. 被引量:29
  • 2丁治明 郭黎敏 李肖楠 等.基于对象关系的位置相关数据库模型及其移动持续查询处理策略.计算机研究与发展,2008,45:88-94. 被引量:1
  • 3Saltenis S, Jensen C S, Leutenegger S T, et al. Indexing the positions of continuously moving objects [C] //Proc of the 2000 ACM SIGMOD Int Conf on Management of Data. New York: ACM, 2000:331-342. 被引量:1
  • 4Tao Y, Faloutsos C, Papadias D, et al. Predietion and indexing of moving objects with unknown motion patterns [C] //Proc of the 2004 ACM SIGMOD Int Conf on Management of Data. New York: ACM, 2004:611-622. 被引量:1
  • 5Aggareal C C, Agrawal D. On nearest neighbor indexing of nonlinear trajectories [C]//Proe of the 22nd ACM SIGMODSIGACT-SIGART Syrup on Principles of Database Systems. New York: ACM, 2003:252-259. 被引量:1
  • 6Jeung H, Liu Q, Shen H T, et al. A hybrid prediction model for moving objects [C] //Proc of the 24th Int Conf on Data Engineering. Piscataway, NJ: IEEE, 2008: 70-79. 被引量:1
  • 7Mamoulis N, Cao H, Kollios G, et al. Mining, indexing, and querying historical spatiotemporal data [C] //Proc of the 10th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2004:236-245. 被引量:1
  • 8Kim S -W, Won J -I, Kim J -D, et al. Path prediction of moving objects on road networks through analyzing past trajectories [C] //Proc of the 11th Int Conf on Knowledge- Based Intelligent Information and Engineering Systems. Berlin: Springer, 2007:379-389. 被引量:1
  • 9Ding Z, Guting R H. Managing moving objects on dynamic transportation networks [C]//Proc of the 16th Int Conf on Scientific and Statistical Database Management. Washington: IEEE Computer Society, 2004:287-296. 被引量:1
  • 10Ding Z, Zhou X. Location update strategies for network- constrained moving objects [C]//Proc of the 13th Int Conf on Database Systems for Advanced Applications. Berlin: Springer, 2008:644-652. 被引量:1

共引文献27

同被引文献100

  • 1刘云峰 ,齐欢 ,HU Xiang'en ,CAI Zhiqiang ,代建民 .基于潜在语义空间维度特性的多层文档聚类[J].清华大学学报(自然科学版),2005(S1):1783-1786. 被引量:11
  • 2潘云鹤,王金龙,徐从富.数据流频繁模式挖掘研究进展[J].自动化学报,2006,32(4):594-602. 被引量:34
  • 3纪洪生.基于概率的剪枝算法[J].电脑知识与技术,2006(11):99-100. 被引量:1
  • 4胡立,陈健,沈书毅,等.基于用户轨迹聚类分析的推荐算法研究[J].计算机研究与发展,2012,49(S1):250-256. 被引量:3
  • 5Castro P S, Zhang D Q, Li S J. Urban traffic modelling and prediction using large scale taxi GPS traces. In: Proceedings of the 2012 Pervasive Computing Lecture Notes in Com- puter Science. Berlin Heidelberg: Springer, 2012. 57-72. 被引量:1
  • 6Gong H M, Chen C, Bialostozky E, Lawson C T. A GPS/ GIS method for travel mode detection in New York city. Computers, Environment, and Urban Systems, 2012, 36(2): 131-139. 被引量:1
  • 7Yue Y, Wang H D, Hu B, Li Q Q, Li Y G, Yeh A G O. Exploratory calibration of a spatial interaction model using taxi GPS trajectories. Computers, Environment, and Urban Systems, 2012, 36(2): 140-153. 被引量:1
  • 8Zhan X Y, Hasan S, Ukkusuri S V, Kamga C. Urban link travel time estimation using large-scale taxi data with par- tial information. Transportation Research Part C: Emerging Technologies, 2013, 33:37-49. 被引量:1
  • 9Brouwers N, Woehrle M. Dwelling in the canyons: dwelling detection in urban environments using GPS, Wi-Fi, and ge- olocation. Pervasive and Mobile Computing, 2013, 9(5): 665 -680. 被引量:1
  • 10Yue Y, Zhuang Y, Li Q Q, Mao Q z. Mining time-dependent attractive areas and movement patterns from taxi trajectory data. In: Proceedings of the 17th International Conference on Geoinformatics. Fairfax, USA: IEEE, 2009. 1--6. 被引量:1

引证文献9

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部