期刊文献+

面向轨迹起止特征点数据的多比例尺可视化方法 被引量:3

A Multi-scale Visualization Method for the Trajectory Origin-Destination Data
原文传递
导出
摘要 本研究以北京市出租车GPS轨迹数据为例,建立了一种面向轨迹起止特征点(Origin-Destination,OD)的多比例尺可视化表达方法。首先,依据轨迹点描述信息提取OD特征点,并进行无效点清理与排除;然后,利用分布密度指标和辅助行政区划数据实施聚类分析,对OD数据分布空间进行区域划分;最后,定义参量统计各区域间OD数据隐含的流向特征,并设计专门符号进行可视化。其中,通过调整最小区域面积控制参数建立与街区、商圈、城区等不同层次地理单元相对应的区域划分,从而获得涵盖3种不同级别的OD数据多比例尺表达结果。试验结果表明,本文提出的方法能够对轨迹OD数据进行有效降维,获取不同尺度下区域间的车辆移动关系,对揭示车流人流时空交互模式及辅助决策有参考意义。 Based on the taxi trajectory data from the city of Beijing, this study proposes a multi-scale visualization approach for trajectory OD (Origin-Destination) data. First, we extract OD points from initial trajectory raw data eliminating invalid points. Then, the distribution space of OD data is subdivided by density analysis and administrative unit aggregation. Finally, we define relevant parameters to summarize inherent OD flow pattern and customize their presentation of multi-scale visualization. In the process above, three regionalization results, which correspond to block level, business district level and district level, are obtained by setting different values of the minimal area of the aggregated region. Therefore, representations at three different scales can be outputted. The experimental results confirmed that our method could effectively achieve the reduction of trajectory big data and reveal mobility pattern, which is helpful for future decision making.
出处 《地球信息科学学报》 CSCD 北大核心 2017年第8期1011-1018,共8页 Journal of Geo-information Science
基金 国家自然科学基金项目(41401447) 国土资源部城市土地资源监测与仿真重点实验室开放基金项目(KF-2016-02-020) 国家高技术研究发展计划(“863”)项目(2015AA124103)
关键词 轨迹数据 多比例尺表达 流向特征 聚类分区 trajectory data multi-scale visualization flow pattern clustering and regionalization
  • 相关文献

参考文献4

二级参考文献125

  • 1艾廷华.适宜空间认知结果表达的地图形式[J].遥感学报,2008,12(2):347-354. 被引量:52
  • 2潘云鹤,王金龙,徐从富.数据流频繁模式挖掘研究进展[J].自动化学报,2006,32(4):594-602. 被引量:34
  • 3彭晗,韩秀华,田振中,秦朝举.公交IC卡数据处理的换乘矩阵构造方法研究[J].交通与计算机,2007,25(4):32-34. 被引量:5
  • 4Batty M. Invisible cities. Environment and Planning B: Planning and Design. 1990, 17: 127-130, doi: 10.1068/b170127. 被引量:1
  • 5Ahas R, Mark Ue. Location based services: New challenges for planning and public administration? Futures, 2005, 37: 547-561, doi: 10.1016/j.futures.2004.10.012. 被引量:1
  • 6Goodchild M F. Citizens as sensors: The world of volunteered geography. GeoJournal, 2007, 69(4): 211-221, doi: 10.1007/s 10708-007-9111 -y. 被引量:1
  • 7Newhaus F. Urban diary: A tracking project//UCL Working Paper Series. Paper 151. Available on line: http://discovery.ucl.ac.uk/19245/. 被引量:1
  • 8Jiang B, Yin J, Zhao S. Characterizing human mobility patterns in a large street network, Physical Review, 2009, E80 021136, doi: 10.1103/PhysRevE.80.021136. 被引量:1
  • 9Liu L, Andris C, Ratti C. Uncovering cabdrivers' behavior pattems from their digital traces Computers. Environment and Urban Systems, 2010, 34(6): 541-548, doi: 10.1016/j.compenvurbsys.2010.07.004. 被引量:1
  • 10Ratti C, Pulselli R M, Williams S et al. Mobile landscapes: Using location data from cell phones for urban analysis. Environment and Planning B: Planning and Design, 2006, 33(5): 727-748, doi: 10.1068/b32047. 被引量:1

共引文献455

同被引文献21

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部