期刊文献+

麻醉深度监测系统的优化算法研究 被引量:2

Research on Optimization Algorithm of Monitoring System for Depth of Anesthesia
下载PDF
导出
摘要 麻醉深度监测对提高麻醉质量,保障患者的手术期安全与康复具有极为重要的意义。系统地回顾了脑电信号分析算法,主要包括脑电双频指数、麻醉趋势指数、脑状态指数等多种不同参数的算法在麻醉深度监测中的应用研究及进展情况。首先比较了这些参数的脑电分析算法在临床应用中的优缺点,接着提出了具有优秀去噪能力的排序熵指数算法,并引入反向映射神经网络对脑电双频指数、麻醉趋势和排序熵指数进行校正优化,以便更精确地实现麻醉深度监护。最后展望了今后其应用于麻醉深度监测领域的发展前景。 Depth of anesthesia(DOA) monitoring is extremely important in improving the quality of anesthe sia,ensuring patient’s safety and rehabilitation in operation.Electroencephalogram(EEG) signal analysis algo rithms are reviewed systematically.The application research and development state of these parameters algo rithms such as bispectral index scale(BIS),nacrotrend(NT) and cerebral state index(CSI) in DOA monitoring process are introduced.Firstly,the advantages and disadvantages of EEG analysis algorithms of these parameters in clinical application are compared.Secondly,the sort entropy index(SEI) algorithm with excellent de-nosing capability is proposed.And the back propagation(BP) neural network is used to revise and optimize BIS,NT and SEI to implement DOA monitoring more accurately.Finally,the applications in DOA monitoring field are fore casted.
出处 《光电技术应用》 2013年第4期41-44,共4页 Electro-Optic Technology Application
关键词 麻醉深度 脑电 脑电双频指数 麻醉趋势 脑状态指数 多参数优化算法 depth of anesthesia(DOA) electroencephalogram(EEG) bispectral index scale(BIS) nac rotrend(NT) cerebral state index(CSI) multi-parameter optimization algorithm
  • 相关文献

参考文献10

  • 1SheebaJH, Stefanovska A,Mcclintock P V Neuronal syn-chrony during anesthesia[J]. Biophysical Journal, 2008,95(6):2722-2727. 被引量:1
  • 2Musizza B , Ribaric S. Monitoring the depth of anesthesia[J]. Sensors, 2010, 10(12):10896-10935. 被引量:1
  • 3Rampil I. A primer for EEG signal processing in anesthesia[J]. Anesthesiology, 1998, 89(4):980. 被引量:1
  • 4Kreuer S Bruhn J, Stracke C, et al. Narotrend of bispec-tral index monitoring during desflurane-remifentanil anes-thesia: a comparison with a standard practice protocol[J].Anesth Analg, 2005,101(2):427-434. 被引量:1
  • 5Schultz A, Grouven U, Beger F, et al. The narotrend indexclassification algorithm, correlation with protocol ef-fect-site concentrations and comparison with spectral pa-rameters[J]. Biomed Tech(Berl), 2004,49: 38-42. 被引量:1
  • 6徐晖,郭锡恩,金孝岠,吴鸿浩.脑状态指数在七氟醚或丙泊酚诱导时的变化[J].临床麻醉学杂志,2008,24(2):109-111. 被引量:8
  • 7Bandt C, Pompe B. Permutation entropy: a natural com-plexity measure for time series[J]. Physical Review Letters,2002,88(17):174102. 被引量:1
  • 8Robert C, Gaudy JF, Limoge A. Electroencephalogram pro-cessing using neural networks[J]. Clin Neurophysiol,2002,113(5):694-701. 被引量:1
  • 9Kalkman CJ, Drummond JC. Monitors of depth of anesthe-sia[J]. Anesthesiology,2002,96(4):784-787. 被引量:1
  • 10周辉,黄宝生.麻醉深度监测的研究进展[J].医学综述,2009,15(17):2678-2681. 被引量:16

二级参考文献16

共引文献22

同被引文献18

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部