摘要
研究了压电材料耦合动态场中 Hamilton型和 Gurtin型变分原理的逆问题。采用变积方法 ,建立了各级变分原理和广义变分原理 ,为建立横观各向同性压电材料的动力学有限元分析模型提供了依据。
The inverse problems in Hamilton and Gurtin Calculus of Variations for coupled dynamic piezoelectric media were studied. Several kinds of Hamilton type and Gurtin type variational principles and generalized variational principles for piezoelectric media were established by using the VI method. The results can provide the criterion for the dynamic Finite Element Method analysis model for the transversely isotropic piezoelectric media.
出处
《复合材料学报》
EI
CAS
CSCD
北大核心
2000年第3期103-106,共4页
Acta Materiae Compositae Sinica
基金
国家自然科学基金!资助项目 ( 5970 2 0 10 )
关键词
压电材料
变分原理
逆问题
动力学
有限元模型
piezoelectric media
variational principle
inverse problem
boundary value problem
initial value problem