摘要
综述了国内和国外学者研究连续介质分析动力学问题的进展,阐明了本文主要论述将Lagrange方程应用于连续介质动力学的问题.论文采用Lagrange-Hamilton体系,分别论述了非保守非线性弹性动力学、不可压缩黏性流体动力学、黏弹性动力学、热弹性动力学、刚–弹耦合动力学和刚–液耦合动力学的Lagrange方程及其应用.论述了应用Lagrange方程建立有限元计算模型的问题.最后,展望了将Lagrange方程应用于连续介质动力学问题的研究前景.
First,the studying progress of domestic and foreign scholars on analytical dynamics of continuum is reviewed.This paper mainly studies the problem of applying the Lagrange equation to the continuum dynamics.By using Lagrange-Hamilton system,Lagrange equations and their applications are investigated for non-conservative nonlinear elastic dynamics,incompressible viscous fluid dynamics,viscoelastic dynamics,thermal elastic dynamics,rigid-elastic coupling dynamics and rigid-liquid coupling dynamics.The establishment of flnite element calculation model by using Lagrange equation was analyzed.Finally,the prospects of applying the Lagrange equation to problems of the continuum dynamics are discussed.
作者
梁立孚
郭庆勇
宋海燕
LIANG Lifu;GUO Qingyong;SONG Haiyan(College of Aerospace and Civil Engineering,Harbin Engineering University,Harbin 150001,China)
出处
《力学进展》
EI
CSCD
北大核心
2019年第1期514-541,共28页
Advances in Mechanics
基金
国家自然科学基金项目资助课题(一般力学的广义变分原理研究10272034)
黑龙江省自然科学基金项目资助课题(电磁热弹性体耦合理论模型和计算方法研究A2015013)