期刊文献+

灰色微分动态自记忆模型在径流模拟及预测中的应用 被引量:13

Differential Hydrological Grey Self-memory Model for runoff simulation and prediction
原文传递
导出
摘要 在灰色微分动态模型的基础之上,采用季节/年际性指数对原始降水和实测径流进行预处理,并引入自记忆函数,构建灰色微分动态自记忆模型,将其应用于滦河流域径流过程的模拟和预测。结果表明:(1)采用预处理前的降水径流数据所构建的DHGM(2,2)模型和DHGM(2,2)自记忆模型在年尺度和月尺度上的径流模拟效果较差,难以反映径流的变化过程,对输入数据进行预处理后,构建的DHGM(2,2)自记忆模型模拟精度得到了很大的提高,三道河子站和滦县站年径流和月径流模拟序列的Nash-Sutcliffe系数和相关系数均达到了0.6以上;(2)模型在年尺度和月尺度的径流预测中具有一定的适用性,且结构简单、计算方便,但需要进一步考虑蒸发、土地利用和人类活动等因素,使模型更为完善。 Based on the differential hydrological grey-model, the annual/seasonal indexes were applied to data pre-proeessing of precipitation and runoff for establishing the Differential Hydrological Grey Self-memo- ry Model with the self-memory theory. The model was used to simulate and predict the runoff in different time scales. The results show that (a) DHGM (2, 2) and Self-memory DHGM (2, 2) which constructed by initial data cannot described the runoff processes in annual and monthly scales. With the pre-processing data of precipitation and runoff, the Self-memory DHGM (2, 2) performed better both in Shandaohezi and Luanxian discharges, and Nash-Sutcliffe and correlation coefficients reached more than 0.6; (b) the model was applicable to predicting the runoff especially on an annual time scale. The structure model was simple and easy to operate, nevertheless, the factors of evaporation, land-use and human activity should be taken into consideration so that the model can be more perfect,
出处 《水利学报》 EI CSCD 北大核心 2013年第7期791-799,共9页 Journal of Hydraulic Engineering
基金 科技部基础性工作专项项目(2009IM020100、2011IM011000) 国家自然科学基金项目(51021066、51009148) “十二五”国家科技支撑计划项目(2012BAC19B03) 中国水利水电科学研究院科研专项(资集1206)
关键词 灰色模型 自记忆理论 季节 年际性指数 径流 Grey model self-memory theory annual/seasonal index runoff
  • 相关文献

参考文献14

二级参考文献170

共引文献218

同被引文献168

引证文献13

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部