期刊文献+

On ε-Constraint Based Methods for the Generation of Pareto Frontiers

On ε-Constraint Based Methods for the Generation of Pareto Frontiers
下载PDF
导出
摘要 Over the years, a number of methods have been proposed for the generation of uniform and globally optimal Pareto frontiers in multi-objective optimization problems. This has been the case irrespective of the problem definition. The most commonly applied methods are the normal constraint method and the normal boundary intersection method. The former suffers from the deficiency of an uneven Pareto set distribution in the case of vertical (or horizontal) sections in the Pareto frontier, whereas the latter suffers from a sparsely populated Pareto frontier when the optimization problem is numerically demanding (ill-conditioned). The method proposed in this paper, coupled with a simple Pareto filter, addresses these two deficiencies to generate a uniform, globally optimal, well-populated Pareto frontier for any feasible bi-objective optimization problem. A number of examples are provided to demonstrate the performance of the algorithm.
出处 《Journal of Mechanics Engineering and Automation》 2013年第5期279-289,共11页 机械工程与自动化(英文版)
关键词 Pareto frontier multiobjective optimization scalarization methods ε-constraint methods design optimization. 基于约束 多目标优化问题 Pareto解集 帕累托最优 全局最优 约束方法 交会法 不均匀
  • 相关文献

参考文献22

  • 1R.T. Marler, J.S. Arora, Survey of multi-objective optimization methods for engineering, Struct. Multidiscp. Optim. 26 (2004) 369-395. 被引量:1
  • 2A Messac, A. Ismail-Yahaya, C.A Mattson, The normalized normal constraint method for generating the Pareto frontier, Struct. Multidiscipl. Optim. 25 (2003) 86-98. 被引量:1
  • 3K. Miettinen, Introduction to multiobjective optimization: Noninteractive approaches, in: J. Branke, K. Deb, K. Miettinen, R, Slowinski (Eds.), Multiobjective Optimization: Interactive and Evolutionary Approaches, Springer, 2008, pp. 1-26. 被引量:1
  • 4V. Pareto, Manuale di Economia Politic a, Piccola Biblioteca Scientifica, Milan, Translated into English by AS. Schwier (1971), MacMillan, London, 1906. 被引量:1
  • 5K. Miettinen, Nonlinear Multiobjective Optimization, Springer, 1999. 被引量:1
  • 6K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, Wiley, 2001. 被引量:1
  • 7F. Logist, B. Houska, M. Diehl, J.V. Impe, Fast Pareto set generation for nonlinear optimal control problems with multiple objectives, Struct. Multidiscipl. Optim. 42 (2010) 591-603. 被引量:1
  • 8I. Das, J. Dennis, Normal-boundary intersection: An alternate method for generating Pareto optimal points in multicriteria optimization problems, NASA contractor report, NASA CR-201616, 1996, p. 38. 被引量:1
  • 9A. Messac, c.A. Mattson, Generating well-distributed sets of Pareto points for engineering design using physical programming, Optimization and Engineering 3 (2002) 431-450. 被引量:1
  • 10M. Martinez, J. Sanchis, X. Blasco, Global and well-distributed Pareto frontier by modified normalized normal constraint methods for bicriterion problems, Struct. Multidiscipl. Optim. 34 (2006) 197-209. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部