期刊文献+

一种高效的小波Contourlet变换阈值去噪算法 被引量:6

Efficient image denoising method based on wavelet-contourlet transform and threshold
下载PDF
导出
摘要 针对现有图像去噪算法去噪效率与信号保真度不高的现象,通过研究小波变换与Contourlet变换,将其有机的结合在一起从而实现优势互补,并提出一种高效的阈值去噪算法,通过建立最大值列表,引入适当的阈值将其系数进行分类,并使用优化后的软阈值去噪算法与边缘优化算法对其分类处理,实验表明,该算法能够有效的对含噪图像进行去噪的同时保留其边缘信息,具有高效性、保真度高的图像去噪特性,在图像去噪领域有较好的发展前景。 In order to improve the de-noising efficiency and heighten the signal fidelity of the existing image de-noising algorithms, the wavelet transform and eontourlet transform are studied, the complementary advantages are achieved by combining the two algorithms. An efficient threshold with de-noising algorithm is proposed. Through the establishment of a maximum value list, an appropriate threshold is introduced, and its coefficient is classified, at last, the images are processed by using the optimized soft threshold de-noising algorithm and edge optimization algorithm. Experiments show that the algorithms can effectively de-noise and preserve the edge information. It have high efficiency and high-fi- delity.
作者 万智萍
出处 《激光与红外》 CAS CSCD 北大核心 2013年第7期831-836,共6页 Laser & Infrared
关键词 CONTOURLET变换 小波变换 小波Contourlet变换 阈值去噪 eontourlet transform wavelet transform wavelet-based contourlet transform threshold de-noising
  • 相关文献

参考文献9

  • 1Wang Xiangyang, Yang Hongying, Fu Zhongkai. A New Wavelet-based image denoising using undecimated discrete wavelet transform and least squares support vector machine [ J ]. Pergamon Press ,2010,37 ( 10 ) :7040 - 7049. 被引量:1
  • 2Nguyen Thanh Binh,Ashish Khare.Multilevel Threshold Based Image Denoising in Curvelet Domain[J].Journal of Computer Science & Technology,2010,25(3):632-640. 被引量:7
  • 3Wang Xiangyang, Fu Zhongkai. A wavelet-based image denoising using least squares support veetor machine[ J]. Pergamon Press, 2010,23 ( 6 ) : 862 - 871. 被引量:1
  • 4Chih-Hsien Hsia, Jing-Ming Guo, Jen-Shiun Chiang. A fast Discrete Wavelet Transform algorithm fnr visual pro- cessing applications [ J ]. Elsevier North-Holland, 2012,92 (1) :89 - 106. 被引量:1
  • 5Crouse M S, Nowak R D, Baraniuk R G. Wavelet-based statistical signal processing using hidden Markov models [ J ]. IEEE Press, 1998,46 (4) :886 - 902. 被引量:1
  • 6Le Pennec E, Mallat S. Sparse geometric image represen- tations with bandelets [ J ]. IEEE Press, 2005, 14 ( 4 ) : 423 - 438. 被引量:1
  • 7Xin Zhang, Xili Jing. Image denoising in contourlet do- main based on a normal inverse Gaussian prior[ J]. Aca- demic Press. 2010,20(5 ) : 1439 - 1446. 被引量:1
  • 8Ding Qiuqi ,Song Haijun,Geng Wenjian ,et al. Image denois- ing algorithm using neighbourhood characteristics and cycle spinning[ J ]. IEEE Computer Society,2011:614 -617. 被引量:1
  • 9Do M N, Vetterli M. Rotation invariant texture eharacter- ization and retrieval using steerable wavelet-domain hid- den Markov models [J]. IEEE Press, 2002,4 (4): 517 -527. 被引量:1

二级参考文献24

  • 1Katsaggelos A K (ed). Digital Image Restoration. New York: Springer-Verlag, 1991. 被引量:1
  • 2Khare A, Tiwary U S. Soft-thresholding for denoising of medical images - A multiresolution approach. International Journal on Wavelet, Multiresolution and Information Processing, 2005, 3(4): 477-496. 被引量:1
  • 3Khare A, Tiwary U S. Symmetric Daubechies complex wavelet transform and its application to denoising and deblurring. WSEAS Transactions on Signal Processing, May 2006, 2(5): 738-745. 被引量:1
  • 4Binh N T. Using adaptive wavelet for image denoising. In Proc. the 5th Scientific Conference of the University of Natural Sciences - Vietnam National University, HoChiMinh City, Vietnam Nov. 14, 2006, pp.16-20. 被引量:1
  • 5Birth N T, Thanh N C. Object detection in Speckled image based on curvelet transform. ARPN Journal of Engineering and Applied Sciences, June 2007, 2(3): 14-16. 被引量:1
  • 6Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage. Biometrika, 1994, 81(3): 425-455. 被引量:1
  • 7Hilton M L, Ogden R T. Data analytic wavelet threshold selection in 2-D signal denoising. IEEE Trans. Signal Processing, 1997. 45(2): 496-500. 被引量:1
  • 8Jansen M, Malfait M, Bultheel A. Generalized cross validation for wavelet thresholding. Signal Processing, Jan. 1997, 56(1): 33-44. 被引量:1
  • 9Weyrich N, Warhola G T. Wavelet shrinkage and generalized cross validation for image denoising. IEEE Trans. Image Processing, Jan. 1998, 7(1): 82-90. 被引量:1
  • 10Donoho D L. Denoising by soft thresholding. IEEE Trans. Information Theory, May 1995, 41(3): 613-627. 被引量:1

共引文献6

同被引文献50

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部