期刊文献+

三维点云法向量的模糊估值算法 被引量:2

Fuzzy Normal Vector Estimation Algorithm of Three-Dimension Point Clouds
下载PDF
导出
摘要 由于获取点云数据时的误差可能造成法向量不准确,在三维重建之前有必要重新对法向量进行估值.文中在分析已有估值算法的基础上,提出了适合于任意形状物体的模糊法向量估值算法.该算法将点云数据的k邻近距离和曲率输入模糊推理系统,根据模糊推理规则将点云数据分类,将模型中具有薄片特征和尖锐特征的区域区分出来,分别用检测器和附加点的算法对这些特殊区域进行专门的法向量估值.采用同时具有几种特征的牙齿模型对所提出的模糊估值算法进行验证,结果表明,此算法估算准确,简单可行. Before a three-dimension reconstruction, the normal vector should be estimated because it may be unreliable due to the error of getting point clouds. In this paper, a fuzzy normal vector estimation algorithm for the object with any shape is proposed after analyzing the existing estimation algorithms. In this algorithm, first, the k-nearest neighbor value and the curvature of the cloud point data are input into a fuzzy inference system. Next, the point clouds are classified according to fuzzy inference rules, and the parts with thin or sharp features are distinguished from the point clouds of model and are then estimated with a checker and with the attachment point algorithm. Finally, the proposed algorithm is evaluated by using a denture model with several kinds of point clouds. The results show that the algorithm is of high estimation accuracy, simplicity and feasibility.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第5期68-72,79,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(51205093 50675054) 黑龙江省教育厅项目(12511599)
关键词 三维点云 模糊推理 法向量估值 尖锐特征 薄片特征 three-dimension point cloud fuzzy inference normal vector estimation sharp feature thin feature
  • 相关文献

参考文献15

  • 1Hoppe H,T(my D H , Foni D. Surface reconstruclion fromunorganized points [ C]//Proceedings of the 19th AnnualConference on Computer Graphics and Interactive Tech-niques. New York:ACM SKjGRAPH Computer Graphics,1992:71-78. 被引量:1
  • 2Huang H , Li D, Zhang H , et al. Consolidation of unorga-riized point clouds for surface reconstruction [ J ]. ACMTransactions on Graphics,2009,28 (5 ) :1-7. 被引量:1
  • 3Jaakko L,Matthias Z,Kniitianuel T,et al. A meshless hie-rarchical representation for light transport [J]. ACMTransactions on Graphics ,2(K)8 ,27 (3) :1-37. 被引量:1
  • 4Amenta N , Bern M. Surface reconstruction by Voronoi fil-tering [J]. Discrete & Computational Geometry, 1998 ,22(3)-.481-504. 被引量:1
  • 5Alliez P, David C S, Tong Y Y,et al. Voronoi-based varia-tional reconstruction of unoriented point sets [ C ] // Pro-ceedings of the Fifth Eurographics Symposium on GeometryProc*essing. Barcelona : Kiirographics Ass(x*iation ,2007 :39-48. 被引量:1
  • 6JR,SfhnahelH W, Klein H ,el al. Robust normal estima-tion for point clouds with sharp features [ J]. Computer &Graphirs,2010,34(2) :94-106. 被引量:1
  • 7Chen Y L,Lai S H. An orientation inference framework forsurface reconstruction from unorganized point clouds [ J].IEEE Transactions on Image Processing,2011 , 20 ( 3 ):762-775. 被引量:1
  • 8Wang J , Yang Z W , Clien Ka-lai. A variational model fornormal computation of point clouds [ J ]. The Visual Com-puter,2012,28(2) ; 163-174. 被引量:1
  • 9Liu Y J ,Zhang Y D. A tiovel nomial estimation based onfuzzy inference for mass point clouds of denture in thethree-dimensional reconslmction [ J j. ICIC Express Let-ters Part B:Applications,2012,3(4) :931-938. 被引量:1
  • 10常俊彦,达飞鹏,蔡亮.基于特征融合的三维人脸识别[J].东南大学学报(自然科学版),2011,41(1):47-51. 被引量:9

二级参考文献11

  • 1Hesher C, Srivastava A, Erlebacher G. A novel tech- nique for face recognition using range imaging [ C ]// Proceedings of the Symposium on Signal Processing and Its Applications. Paris, France,2003 : 201 -204. 被引量:1
  • 2Pan G, Han S, Wu Z H, et al. 3D face recognition u- sing mapping depth images [C ]//Proceedings of the Conference on Computer Vision and Pattern Recogni- tion. San Diego, CA, USA,2005:1-7. 被引量:1
  • 3Cook J, Chandran V, Sridharan S, et al. Face recogni- tion from 3D data using iterative closest point algorithm and Gaussian mixture models [ C ]//Proceedings of the Second International Symposium on 3D Data Process- ing, Visualization and Transmission. Thessaloniki, Greece ,2004 : 502 - 209. 被引量:1
  • 4Karima O, Ben A. 3D face recognition using RICP and geodesic coupled approach [ C ]//IEEE International Multimedia Modeling. Sophia Antipolis, France, 2009 : 390 - 400. 被引量:1
  • 5Vogel J, Schwaninger A, Wallraven C, et al. Categori-zation of natural scenes: local vs. global information [ C ]//Proceedings of the Sixth International Symposium on Applied Perception in Graphics and Visualization. Boston, USA, 2006:33-40. 被引量:1
  • 6Turk M, Pentland A. Eigenfaces for recognition [ J]. Cognitive Neuroscience, 1991, 3( 1 ) :71 - 86. 被引量:1
  • 7Dorai C, Jain A K. COSMOS: a representation scheme for 3D free-form objects [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (10): 1115-1130. 被引量:1
  • 8Kimme R, Sethian J. Computing geodesic paths on man- ifolds[ J ]. Proc Nat Acad Sci, 1998,95 ( 15 ): 8431 - 8435. 被引量:1
  • 9Sethian J. A fast marching level set method for mono- tonically advancing fronts [ J ]. Proc Nat Acad Sci, 1996,93(4) : 1591 - 1595. 被引量:1
  • 10Farkas L. Anthropometric facial proportions in medi- cine [ M ]. Berlin, Germany : John Wiley & Sons, 1987:64 - 66. 被引量:1

共引文献8

同被引文献18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部