期刊文献+

快速路交通事件持续时间预测模型 被引量:7

Traffic Incident Duration Forecast Model of Expressway
下载PDF
导出
摘要 针对城市快速路交通事件持续时间影响因素的复杂性和不确定性,结合贝叶斯网络和非参数回归方法,提出了一种新的快速路交通事件持续时间预测模型.采用上海市快速路监控中心数据,经过降噪处理,生成样本数据;在分析样本数据特征基础上,确定了贝叶斯网络的结构学习方法与参数学习方法;对贝叶斯网络模型的结果用非参数回归算法生成持续时间预测值.最后,对模型预测精度进行了验证,发现模型预测效果较好. According to the complexity and uncertainty of impact fact of traffic event duration on urban expressway, a new forecasting model using Bayesian Network and non- parametric regression for traffic incident duration was proposed. A sample database, provided by Shanghai Expressway Monitoring Center, was generated by noise reduction. The algorisms of structure learning and parameter learning were determined based on data characteristics, and the forecast results with non-parametric regression were obtained. Finally, the forecasting model was tested with new data and the results verified the accuracy of the model.
作者 杨超 汪超
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第7期1015-1019,共5页 Journal of Tongji University:Natural Science
基金 国家"八六三"高技术研究发展计划(2011AA110305)
关键词 快速路交通 事件持续时间 贝叶斯网络 非参数 回归 预测模型 expressway traffic incident duration BayesianNetwork non-parametric regression forecast model
  • 相关文献

参考文献12

二级参考文献18

  • 1刘伟铭,管丽萍,尹湘源.基于多元回归分析的事件持续时间预测[J].公路交通科技,2005,22(11):126-129. 被引量:15
  • 2樊建聪,张问银,梁永全.基于贝叶斯方法的决策树分类算法[J].计算机应用,2005,25(12):2882-2884. 被引量:20
  • 3Giuliano Genevieve. Incident characteristics, frequency, and duration on a high volume urban freeway [J]. Transportation Research Board, National Research Council: Transportation Research Part A, 1989,23 (5) : 387. 被引量:1
  • 4Stathopulos A, Karlaftis M G. Modeling duration of urban traffic congestion [J]. Journal of Transportation Engineering, 2002,128(6), 587. 被引量:1
  • 5Doohee Nam, Fred Mannering. An exploratory hazard-based analysis of highway incident duration[J]. Transp Res, 2000, 34A (2) :85. 被引量:1
  • 6Zografos K G, Konstantions N A, George M V. A real-time decision support system for roadway network incident response logistics[J]. Transportation Research. Part C. 2002, 10 (1) : 1. 被引量:1
  • 7CHUNG Younshik. Development of an accident duration prediction model on the Korean Freeway Systems[J]. Accident Analysis and Prevention. 2010, 42: 282. 被引量:1
  • 8Garib A, Radwan A E, Al-deek H. Estimating magnitude and duration of incident delays [J]. Journal of Transportation Engineering. 1997, 123(6): 459. 被引量:1
  • 9Edward C S. New model for predicting freeway incidents and incident delays[J]. Journal of Transportation Engineering. 1997, 123(4): 267. 被引量:1
  • 10Ozbay K, Narayanan A. Jonnalagadda S. Wide-area incident management support system (WAIMSS)[C]//3rd Annual World Congress on ITS. Orlando: IT' S America. 1996.. 14 - 18. 被引量:1

共引文献44

同被引文献57

  • 1李耀勇,郑南宁.前馈神经网络的隐结点个数与网络推广能力的关系[J].西安交通大学学报,1996,30(9):22-29. 被引量:5
  • 2潘吉斯,吕强,王红玲.一种并行蚁群Bayesian网络学习的算法[J].小型微型计算机系统,2007,28(4):651-655. 被引量:9
  • 3谭满春,冯荦斌,徐建闽.基于ARIMA与人工神经网络组合模型的交通流预测[J].中国公路学报,2007,20(4):118-121. 被引量:68
  • 4GOLOB F T, RECKER W, LEONARD D J. An a- nalysis o{ the severity and incident duration of truck-Involved freeway accidents [J~. Accident A- nalysis and Prevention, 1987, 19(4) :375-395. 被引量:1
  • 5SULLIVAN C E. New model for prediction incidents and incident delay [J~. Transportation Engineering, 1997, 123(4) :267-275. 被引量:1
  • 6OZBAY, KAAN, KACHROO P. Incident manage- ment in intelligent transportation systems [ M~. Boston, MA: Artech House, 1999. 被引量:1
  • 7CAMPOS de LUIS M. A scoring function for learn- ing bayesian networks based on mutual information and conditional independence Tests EJ~. Journal of Machine Learning Research, 2006(7):2149-2187. 被引量:1
  • 8DEMIROLUK S, OZBAY KAAN. Adaptive learn- ing in bayesian networks for incident duration pre- diction [J]. Transportation Research Record: Jour- nal of the Transportation Research Board, 2014, 2460:77-85. 被引量:1
  • 9WEN Yuan, CHEN Shuyuan. Traffic incident du-ration prediction based on K-nearest neighbor[J]. Applied Mechanics and Materials Journal Impact Factor ~ Information, 2013(253/255) : 1675-1681. 被引量:1
  • 10WU Weiwei, CHEN Shuyan. Traffic incident du- ration prediction based on support vector regres- sionEJ~. American Society of Civil Engineers, 2011,421:2412-2421. 被引量:1

引证文献7

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部