期刊文献+

基于StN分布下联合位置与尺度模型的极大似然估计 被引量:11

Maximum Likelihood Estimation for Joint Location and Scale Models of the Skew-t-normal Distribution
下载PDF
导出
摘要 在社会和经济等领域中存在大量的异方差数据,而且人们非常关注方差的变化,所以在研究社会经济现象时方差建模与均值建模同等重要;相对于对称分布,偏态分布更能获得更全面准确、更及时有效的信息,文章基于以上两点,研究提出基于偏t正态分布(StN)的联合位置与尺度模型,并给出该模型参数的极大似然估计,模拟和实例研究结果表明该模型和方法是有用和有效的. In social and economic fields,there are a lot of heteroscedastic data,and we are very concerned about the change of the variance, thus modeling of the variance can be as im- portant as that of the mean in the social economic phenomenon. On the other hand, compared with the symmetrical distribution, skewness distribution can obtain more accurate and more timely information. Based on the above two points, we propose a joint location and scale mod- els based on the skew- t -normal distribution,and investigate the maximum likelihood estima- tor of this model. Simulation studies and a real example show that this model and method are useful and effective.
出处 《应用数学》 CSCD 北大核心 2013年第3期671-676,共6页 Mathematica Applicata
基金 国家自然科学基金资助项目(11261025 11126309) 云南省自然科学基金资助项目(2009ZC039M 2011FB016 2011FZ044)
关键词 StN分布 联合位置与尺度模型 极大似然估计 Skew- t-normal distribution~ Joint location and scale model~ Maximum Hkeli hood estimation
  • 相关文献

参考文献12

二级参考文献26

  • 1Dempster A,Laird N,Rubin D. Maximum likelihood estimation from incomplete data via EM algorithm [J]. J. Royal Statistcal Society Series B, 1997,39 : 1-38. 被引量:1
  • 2Moon T K. The expectation-maximization algorithm[J]. IEEE Signal Processing Magazine, 1996,11 (1): 47. 被引量:1
  • 3Shi N Z,Zheng S R,Guo J H. The restricted EM algorithm under inequality restrictions on the parameters[J]. Journal of Multivariate Analysis, 2005,92:53 -76. 被引量:1
  • 4Tong Hengqing. Evaluation model and its iterative algorithm by alternating projection[J]. Mathematical and Computer Modelling, 1993,18(8) : 55-60. 被引量:1
  • 5Rao C R, Toutenburg H. Linear Model : Least Squares and Alternatives[M]. Berlin: Springer, 2005. 被引量:1
  • 6Waterman M S. A restricted least squares problem[J]. Technometrics, 1974,16:135-136. 被引量:1
  • 7Fang Kaitai, The Regression model with linear constraint and nonnegative regression coefficients, Computational Mathematics, 1985,7 (3): 237-246. 被引量:1
  • 8杨自强.广义最小二乘模型的应用.科学通报,1982,7(4):389-392. 被引量:2
  • 9Tong Hengqing,The generalized ridge estimate of parameters in variance component model,Communications in Statistics,2002,31(1) : 119-128. 被引量:1
  • 10Smirlis Y G, Despotis E K. Data envelopment analysis with missing values: An interval DEA approach[J]. Appl. Math. Comput. , 2006,177 : 1-10. 被引量:1

共引文献9

同被引文献62

引证文献11

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部