期刊文献+

凸约束广义线性回归模型的参数估计及算法 被引量:5

Parameter Estimation and Its Algorithm for the Generalized Linear Regression Model with Convex Constraints
下载PDF
导出
摘要 本文将从实际评估工作中提练出来的一种评估模型推广至因变量未知且带有一般性凸约束条件的广义线性模型,证明了模型解的存在唯一性,并从解的几何背景出发,提出了基于凸集间交互投影的参数最小二乘估计的有效算法.结合模型的特点,引入EM算法给出了参数的极大似然估计.模型的提出丰富了线性模型的结构框架,算法的给出为参数估计提供了行之有效的计算方法. In this paper, we generalize an evaluation model extracted from the practical work to the generalized linear regression model with convex constraints, whose dependent variables are unknown. On the basis of proving the existence and uniqueness of the solution, from an angle of geometric meaning,we present an iterative algorithm by alternating projection between two convex sets to solve the least square estimation. Meanwhile, in view of the characteristic of the model,we take advantage of EM algorithm to accomplish the maximum likelihood estimation of parameters. The model proposed in this paper extends the structural framing of linear model and the presentation of algorithm realizes the effective computation of parameter estimation.
出处 《应用数学》 CSCD 北大核心 2008年第4期635-639,共5页 Mathematica Applicata
基金 国家自然科学基金项目(30570611)
关键词 凸约束 广义线性回归 参数估计 交互投影 EM算法 Convex constraint Generalized linear regression Parameter estimation Alternating projection EM algorithm
  • 相关文献

参考文献9

  • 1Dempster A,Laird N,Rubin D. Maximum likelihood estimation from incomplete data via EM algorithm [J]. J. Royal Statistcal Society Series B, 1997,39 : 1-38. 被引量:1
  • 2Moon T K. The expectation-maximization algorithm[J]. IEEE Signal Processing Magazine, 1996,11 (1): 47. 被引量:1
  • 3Shi N Z,Zheng S R,Guo J H. The restricted EM algorithm under inequality restrictions on the parameters[J]. Journal of Multivariate Analysis, 2005,92:53 -76. 被引量:1
  • 4Tong Hengqing. Evaluation model and its iterative algorithm by alternating projection[J]. Mathematical and Computer Modelling, 1993,18(8) : 55-60. 被引量:1
  • 5Rao C R, Toutenburg H. Linear Model : Least Squares and Alternatives[M]. Berlin: Springer, 2005. 被引量:1
  • 6Waterman M S. A restricted least squares problem[J]. Technometrics, 1974,16:135-136. 被引量:1
  • 7Fang Kaitai, The Regression model with linear constraint and nonnegative regression coefficients, Computational Mathematics, 1985,7 (3): 237-246. 被引量:1
  • 8杨自强.广义最小二乘模型的应用.科学通报,1982,7(4):389-392. 被引量:2
  • 9Tong Hengqing,The generalized ridge estimate of parameters in variance component model,Communications in Statistics,2002,31(1) : 119-128. 被引量:1

共引文献1

同被引文献36

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部