摘要
The molecule with Th symmetry is rare. Two C60-1ike molecules C48N12 and C48B12 with rare Th symmetry have been reported here, which is an approach to seek for the molecule with rare Th symmetry. Their structural, electronic, vibrational, NMR, and thermodynamic properties have been calculated at the B3LYP/6-31G(d) level of theory. Vibrational modes have been assigned according to their symmetry. They all have 73 independent vibrational modes: 22 IR-active modes with Tu symmetry and 37 Raman-active modes with Ag, Eg and Tg symmetry, respectively. The heats of formation have been calculated using isodesmic reactions, and the values of C48N12 and C48B12 are 3812.0 and 3423.8 kJ mo1-1, respectively. According to the estimated band gaps for their fcc solid, they are all semiconducting materials, like C60, especially C48B12-based fcc solid.
The molecule with Th symmetry is rare. Two C60-1ike molecules C48N12 and C48B12 with rare Th symmetry have been reported here, which is an approach to seek for the molecule with rare Th symmetry. Their structural, electronic, vibrational, NMR, and thermodynamic properties have been calculated at the B3LYP/6-31G(d) level of theory. Vibrational modes have been assigned according to their symmetry. They all have 73 independent vibrational modes: 22 IR-active modes with Tu symmetry and 37 Raman-active modes with Ag, Eg and Tg symmetry, respectively. The heats of formation have been calculated using isodesmic reactions, and the values of C48N12 and C48B12 are 3812.0 and 3423.8 kJ mo1-1, respectively. According to the estimated band gaps for their fcc solid, they are all semiconducting materials, like C60, especially C48B12-based fcc solid.
基金
supported by the Natural Science Foundation of Shandong Province (No. ZR2011BM022)