期刊文献+

添加均匀分布噪声的数据扰动小样本分类算法 被引量:1

A Data Disturbance Small Sample Classification Algorithm by Adding Uniform Distribution Noise
下载PDF
导出
摘要 小样本分类问题由于包含的训练样本个数比较少,通常不足以训练一个理想的分类模型。小样本分类问题普遍存在于现实世界中,因此提高分类器在小样本分类问题上的性能就成为了研究的热点。本文针对该问题,提出了一种添加均匀分布噪声的数据扰动小样本分类算法。该算法首先对每一个原始样本添加一个服从均匀分布的噪声,对原始数据进行一定程度的扰动。然后在所获得的扰动数据集上训练分类模型。在UCI标准数据集上的仿真实验表明,本文算法较传统分类方法,能更有效地提高小样本分类问题的分类性能。 Due to the relatively small number of training samples contained in small sample classification problems,it is insufficient to train a good classification model.As the small sample classification problems occur frequently in the real world,so how to improve the performance of classifiers on small sample classification problems becomes a hot-point.For this problem,in this paper,we propose a data disturbance small sample classification algorithm by adding uniform distribution noise.Firstly,we add a noise following uniform distribution to the original samples,causing a disturbance to some extent.Then train a classification model in the disturbed data set.The simulation experiments on UCI standard data sets show that the proposed algorithm can effectively improve the classification performance on small sample classification problems compared with traditional classification methods.
作者 徐尽
出处 《科技通报》 北大核心 2013年第6期122-124,共3页 Bulletin of Science and Technology
关键词 小样本分类 均匀分布 噪声 数据扰动 small sample classification uniform distribution noise data disturbance
  • 相关文献

参考文献8

  • 1程勒,石道中,李云龙.叶片处理对风机噪声影响的试验研究[J].科技通报,1997,13(2):93-96. 被引量:4
  • 2陈毅松,汪国平,董士海.基于支持向量机的渐进直推式分类学习算法[J].软件学报,2003,14(3):451-460. 被引量:88
  • 3Chapelle O, Schlkopf B, A Zien, et al. Semi-Supervised Learning, Cambridge[M].MA: MIT Press, 2006. 被引量:1
  • 4Abe N, Mamitsuka H. Query learning strategies using boosting and bagging [C]//.Proceedings of the 15th Inter- national Conference on Machine Learning (ICML'98), Madison, WI, 1998, 1-9. 被引量:1
  • 5Yang J, Yu X, Xie Z Q. A novel virtual sample generation method based on Ganssian distribution [J].Knowledge- Based Systems, 2011, 24(6): 740-748. 被引量:1
  • 6Belkin M, P Niyogi, Sindhwani V. On mainfold regulariza- tion [C]//.Proc.Intl.Workshop on Artificial Intelligence and Statistics, 2005. 被引量:1
  • 7Hsu CW, Lin C J. A comparison on methods for multi- class support vector machines [J]. IEEE Transactions on Neural Networks, 2001,13(2):415-425. 被引量:1
  • 8Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model Selection [C]//.Wermter S, Riloff E, Scheler G, eds. Proc. 14th Joint Int. Conf. Artifi- cial Intelligence. San Mateo, CA: Morgan Kaufmann, 1995 : 1137-1145. 被引量:1

二级参考文献18

  • 1[1]Vapnik V. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995. 被引量:1
  • 2[2]Stitson MO, Weston JAE, Gammerman A, Vovk V, Vapnik V. Theory of support vector machines. Technical Report, CSD-TR-96-17, Computational Intelligence Group, Royal Holloway: University of London, 1996. 被引量:1
  • 3[3]Cortes C, Vapnik V. Support vector networks. Machine Learning, 1995,20:273~297. 被引量:1
  • 4[4]Vapnik V. Statistical Learning Theory. John Wiley and Sons, 1998. 被引量:1
  • 5[5]Gammerman A, Vapnik V, Vowk V. Learning by transduction. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. Wisconsin, 1998. 148~156. 被引量:1
  • 6[6]Joachims T. Transductive inference for text classification using support vector machines. In: Proceedings of the 16th International Conference on Machine Learning (ICML). San Francisco: Morgan Kaufmann Publishers, 1999. 200~209. 被引量:1
  • 7[7]Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. In: Haussler D, ed. Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory. Pittsburgh, PA: ACM Press, 1992. 144~152. 被引量:1
  • 8[8]Burges CJC. Simplified support vector decision rules. In: Saitta L, ed. Proceedings of the 13th International Conference on Machine Learning. San Mateo, CA: Morgan Kaufmann Publishers, 1996. 71~77. 被引量:1
  • 9[9]Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machines. In: Proceedings of the IEEE NNSP'97. Amelia Island, FL, 1997. 276~285. 被引量:1
  • 10[10]Joachims T. Making large-scale SVM learning practical. In: Scholkopf, Burges C, Smola A, eds. Advances in Kernel Methods--Support Vector Learning B. MIT Press, 1999. 被引量:1

共引文献90

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部