期刊文献+

半监督增强线性近邻传递算法

SEMI-SUPERVISED INCREMENTAL LINEAR NEIGHBORHOODS PROPAGATION AGORITHM
下载PDF
导出
摘要 本文将先验鉴别信息引入到降维过程中,融合线性近邻传递模型,提出了半监督增强线性近邻传递算法S-ILNP(Semi-supervised Incremental Linear Neighborhoods Propagation)。该方法首先利用先验标签信息构建类间和类内图,再依据拉普拉斯映射原理实现维数约减,运用线性近邻传递实现半监督学习,标签信息由全局一致性假设,通过局部最近临,从有标签数据点进行全局传递标注。该算法充分利用先验鉴别信息,显著提高了图像检索的准确度。 In this paper, priori information is put into the processes of dimensionality reduction, fusing the model of linear neighborhoods propagation,we propose a new semi-supervised incremental linear neighborhoods propagation algorithm. First of all, the priori label information is used to construct within-class graph and between-class graph. Secondly, Laplace eigenmaps principle is applied to achieve the goal of dimensionality reduction and then to carry out semi-supervised learning with linear neighborhoods propagation. At last, all the unlabeled points are signed the suitable labels from the labeled points by using the local linear neighborhoods with sufficient smoothness. the accuracy of image retrieval with our proposed algorithm are greatly improve by making use of the priori identification information.
作者 黄传波
出处 《南阳理工学院学报》 2012年第6期1-5,55,共6页 Journal of Nanyang Institute of Technology
基金 国家自然科学基金(90820306)
关键词 近邻传递 半监督学习 相关反馈 图像检索 neighborhood propagation semi-supervised learning relevance feedback image retrieval
  • 相关文献

参考文献19

  • 1Zhou Xiangscan, Huang Thomas S. Relevance feedback in image retrieval: a comprehensive review [ J ]. ACM Multi- media Systems Journal, 2003, 8(6) :536 -544. 被引量:1
  • 2牛盼盼,王向阳,周璐,杨红颖.基于多语义特征的彩色图像检索技术研究[J].计算机科学,2009,36(3):226-231. 被引量:7
  • 3Chapelle O, Schilkopf B, Zien A. Semi-Supervised Learn- ing[ M]. Cambridge: MIT Press, 2006. 被引量:1
  • 4Zhou Zhihua, Li Ming. Tri-training: exploiting unlabeled data using three classifiers [ J ]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17 ( 11 ) : 1529 - 1541. 被引量:1
  • 5Dempster A P, Laird N M, Rubin D B. Maximum likeli- hood from incomplete data via the EM algorithm [ J ]. Journal of the Royal Statistical Society, 2000, 39 (1) : 1 -3. 被引量:1
  • 6Blum A, Mitchell T. Combining labeled and unlabeled da- ta with co- training[ C ]//Proceedings of the eleventh an- nual conference on Computational learning theory. New York : ACM, 1998 : 92 - 100. 被引量:1
  • 7E1- Yaniv R, Pechyony D, Vapnik V. Large margin vs large volume in transductive learning[ J]. Machine Learn- ing, 2008, 72(3) :173 - 188. 被引量:1
  • 8Zhou Zhihua, Chen Kejia, Dai Hongbin. Enhancing rele- vance feedback in image retrieval using unlabeled data [J]. ACM Transactions on Information Systems (TOIS),2006, 24(2) :219 -244. 被引量:1
  • 9Belkin M, Niyogi P. Laplacian eigenmaps for dimensional- ity reduction and data representation[ J ]. Neural Computa- tion, 2003, 15(6) :1373 - 1396. 被引量:1
  • 10Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering [ C ]//Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2001:585 -591. 被引量:1

二级参考文献17

  • 1王崇骏,杨育彬,陈世福.基于高层语义的图像检索算法[J].软件学报,2004,15(10):1461-1469. 被引量:20
  • 2李清勇,胡宏,施智平,史忠植.基于纹理语义特征的图像检索研究[J].计算机学报,2006,29(1):116-123. 被引量:25
  • 3王向阳,胡峰丽.一种基于位平面综合特征的彩色图像检索方案[J].计算机研究与发展,2007,44(5):867-872. 被引量:9
  • 4Datta R, Li Jia, Wang J Z. Content-based image retrieval-approaches and trends of the new Age[C]//Proceedings of the 7th International Workshop on Multimedia Information Retrieval, in conjunction with ACM International Conference on Multimedia. Singapore, ACM, November 2005: 253-262 被引量:1
  • 5Vogel J, Schiele B. Performance evaluation and optimization for content-based image retrieval[J]. Pattern Recognition, 2006,39 (5):897-909 被引量:1
  • 6Han J,Ngan K N,Li Mingjing,et al. A memory learning framework for effective image retrieval [J]. IEEE Trans. on Image Processing, 2005,14(4) : 511-524 被引量:1
  • 7He Jingrui , Li Mingjing, et al. Generalized Manifold - Ranking Based Image Retrieval[J]. IEEE Trans. on Image Processing, 2006,15(10) :3170-3177 被引量:1
  • 8Howarth P,Ruger S. Robust texture features for still-image retrieval[J]. IEE Proc on Vision,Image and Signal,2005,152 (6) : 868-874 被引量:1
  • 9Zhang Yu - Jin. Semantic- Based Visual Information Retrieval [ M ]. USA: IRM Press, 2007 被引量:1
  • 10Luo J B, Boutell M,Brown C. Pictures are not taken in a vacuum: An overview of exploiting context for semantic scene content understanding[J]. IEEE Signal Processing Magazine, 2006, 23 (2) :. 101-114 被引量:1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部