期刊文献+

基于全局和局部保持的半监督支持向量机 被引量:19

Global and Local Preserving Based Semi-supervised Support Vector Machine
下载PDF
导出
摘要 支持向量机(SVM)作为正则化方法的一个特例在模式识别领域得到了成功地运用,然而传统的SVM方法作为一种有监督的学习方法主要依据最大间隔原则得到决策超平面的法向量,而并没有充分考虑样本内在的几何结构以及所蕴含的判别信息.因此,本文将线性判别分析(LDA)的类内散度和保局投影(LPP)的基本原理引入到SVM中,提出基于全局和局部保持的半监督支持向量机:GLSSVM,该方法在继承传统的SVM方法的特点的基础上,充分考虑样本间具有的全局和局部几何结构,体现样本间所蕴含的局部和全局判别信息,同时满足作为半监督方法的必须依据的一致性假设,从而在一定程度上提高了分类精度.通过在人造数据集和真实数据集上的测试表明该方法具有上述优势. The support vector machine(SVM),as one of special regularization methods,has been used successfully in the field of pattern recognition.However,the traditional SVM,a supervised learning method,gets the normal vector of the decision boundary mainly according to the largest interval principle but has not considered the underlying geometric structure and the discriminant information fully.Therefore,a global and local preserving based semi-supervised support vector machine:GLSSVM,is presented in this paper by introducing the basic theories of the locality preserving projections(LPP) and the within-class scatter of linear discriminant analysis(LDA) into the SVM.This method inherits the characteristics of the traditional SVM,fully considers the global and local geometric structure between samples,shows the global and local underlying discriminant information and meets the consistency assumption which the semi-supervised method must coincides with so that the shortcomings of the supervised methods can be overcome and the classification accuracy can be increased.The tests on the artificial and real datasets show the above mentioned advantages of the GLSSVM method.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第7期1626-1633,共8页 Acta Electronica Sinica
基金 国家863高技术研究发展计划(No.2007AA1Z158 No.2006AA10Z313) 国家自然科学基金(No.60903100 No.90820002) 国防应用基础研究基金(No.A1420461266) 江苏省普通高校研究生科研创新计划(No.CX09B-175Z) 浙江大学CAD&CG国家重点实验室开放课题(No.A0802)
关键词 支持向量机 保局投影 线性判别分析 半监督 一致性假设 support vector machines locality preserving projection linear discriminant analysis semi-supervised consistency assumption
  • 相关文献

参考文献23

  • 1Vanpanik V.Statistical Leaming theory[M].NewYork:Wiley Press,1998. 被引量:1
  • 2Scholkopf B,Smola A.Learming with Kemels-Support Vector Machine,Regularization,Optimization,and Beyond[M].Cambridge,MA:MTT Press,2002. 被引量:1
  • 3Pontil M,Verri A.Support vector machine for 3D object recognition[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1998,20(6):673-646. 被引量:1
  • 4李建中,杨昆,高宏,骆吉洲,郭政.考虑样本不平衡的模型无关的基因选择方法[J].软件学报,2006,17(7):1485-1493. 被引量:24
  • 5邓林,马尽文,裴健.秩和基因选取方法及其在肿瘤诊断中的应用[J].科学通报,2004,49(13):1311-1316. 被引量:18
  • 6Tefas A,Kotropoulos C,Pitas I.Using support vector machines to enhance the performance of elastic graph matching for frontal face authentication[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2001,23(7):735-746. 被引量:1
  • 7Zafeiriou S F,Tefas A,Pitas I.Minimum class variance support vector machines[J].IEEE Trans on Image Processing,2007,16(10):2551-2564. 被引量:1
  • 8Joachims T.Transductive Inference for Text Classification using Support vector Machines[A].Proc.ICML-99[C].San Fransisco:Morgan Kaufmann,1999. 被引量:1
  • 9Fung G,Mangasarian O L.Semi-supervised support vector machines for unlabeled data classification[J].Optimization Methods and Software,2001,(15):29-44. 被引量:1
  • 10Tenenbaum J B,Silva V D,Langford J C.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290:2319-2323. 被引量:1

二级参考文献32

  • 1Golub T R, Slonim D K, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 1999, 286:531~537 被引量:1
  • 2Alon U, Barkai N, Notterman D A, et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Nat'l Acad Sci USA, 1999, 96:6745~6750 被引量:1
  • 3Brown M P S, Grundy W N, Lin D, et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Nat'l Acad Sci, 2000, 97(1): 262~267 被引量:1
  • 4Dudoit S, Fridyand J, Speed T P. Comparison of discrimination methods for the classification of tumor using gene expression data.Journal of American Statistical Association, 2002, 97(457): 77~87 被引量:1
  • 5Furey T, Cristianini N, Duffy N, et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 2000, 16(10): 909~914 被引量:1
  • 6Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machine. Machine Learning,2002, 46(1/3): 389~422 被引量:1
  • 7Pavlidis P, Weston J, Cai J, et al. Gene functional Analysis from heterogeneous data. Proc Fifth Int. Conf. on Computational Molecular Biology. New York: ACM Press, 2001. 249~255 被引量:1
  • 8Ding H Q. Analysis of gene expression profiles: class discovery and leaf ordering. In: Proc RECOMB, 2002. 127~136 被引量:1
  • 9Goulden C H. Methods of Statistical Analysis. (2nd edition). New York: John Wiley & Sons, 1956 被引量:1
  • 10Hettmansperger T P. Statistical Inference Based on Ranks, New York: John Wiley & Sons, Inc, 1984 被引量:1

共引文献37

同被引文献257

引证文献19

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部