期刊文献+

基于自适应高斯混合模型与静动态听觉特征融合的说话人识别 被引量:18

Speaker recognition based on adapted Gaussian mixture model and static and dynamic auditory feature fusion
下载PDF
导出
摘要 对特征参数和高斯混合模型进行改进,提出了一种特征域和模型域混合补偿的方法用于解决说话人识别特征受噪声影响较大以及高斯混合模型随训练样本长度减小而性能下降的问题。通过模拟人耳听觉,给出了基于伽马通滤波器的伽马通滤波倒谱系数;考虑其只反映了语音的静态特征,提取了能够反映语音动态特征的伽马通滑动差分倒谱系数。基于因子分析技术,利用移动因子表示高斯混合模型的自适应过程,通过训练语料较充分的说话人模型中的均值向量补偿受训练语料长度影响较大的分量的均值向量。仿真实验表明:在纯净背景下,本文方法的识别率达到了98.46%;在不同噪声环境下,本文提出的混合补偿方法能有效提高说话人识别系统的性能。 By optimizing the feature vectors and Gaussian Mixture Models(GMMs), a hybrid compen- sation method in model and feature domains is proposed. With the method, the speaker recognition features effected by the noise and the declined performance of GMM with reducing length of the train- ing data under different unexpected noise environments are improved. By emulating human auditory, Gammatone Filter Cepstral Coefficients(GFCC) is given out based on Gammatone Filter bank models. As the GFCC only reflects the static properties, the Gammatone Filter Shifted Delta Cepstral Coeffi- cients(GFSDCC) is extracted based on Shifted Delta Cepstral. Then, the adaptive process for each GMM model with sufficient training data is transformed to the shift factor based on factor analysis.Furthermore, when the training data are insufficient, the coordinate of the shift factor is learned from the GMM mixtures of insensitive to the training data and then it is adapted to compensate other GMM mixtures. The experiment result shows that the recognition rate of the method proposed is 98.46% . The conclusion is that the performance of speaker recognition system is improved under several kinds of noise environments.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2013年第6期1598-1604,共7页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.61263031) 甘肃省自然科学基金资助项目(No.1010RJZA046)
关键词 高斯混合模型 伽马通滤波器 滑动差分倒谱 因子分析 听觉特征 Gaussian mixture model Gammatone filter shifted delta cepstra factor analysis auditory feature
  • 相关文献

参考文献15

  • 1KINNUNEN T, LI H Z.An overview of text-independent speaker recognition: from features to supervectors [J].Speech Communication, 2010,52:12-40. 被引量:1
  • 2HAMID R,SEYYED A ,HOSSEIN B,et al..A new representation for speech frame recognition based on redundant wavelet filter banks [J].Speech Communication, 2012, 54:256-271. 被引量:1
  • 3TYLER K P, STEPHANIE N,JOHN D,et al..Human voice recognition depends on language ability [J].Science, 2011,333:595. 被引量:1
  • 4PARVIN Z,SEYYED A.Robust speech recognition by extracting invariant features [J].Procedia - Social and Behavioral Sciences, 2012,32(3):230-237. 被引量:1
  • 5SHAO Y,JIN ZH ZH,WANG D L.An auditory based feature for robust speech recognition [C].ICASSP,2009:4625-4628. 被引量:1
  • 6MAK B K W, LAI T C, TSANG I W, et al..Maximum penalized likelihood kernel regression for fast adaptation [J].IEEE Transactions on Audio, Speech and Language Processing, 2009, 17(7): 1372-1381. 被引量:1
  • 7翟优,曾峦,熊伟.基于不变特征描述符实现星点匹配[J].光学精密工程,2012,20(11):2531-2539. 被引量:19
  • 8DU J,HUO Q.A feature compensation approach using high-order vector taylor series approximation of an explicit distortion model for noisy speech recognition[J].IEEE Transactions on Adio, Speech, and Language Processing,2011,19(8):2285-2293. 被引量:1
  • 9JEONG Y.Speaker adaptation based on the multilinear decomposition of training speaker models [C].Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing.Dallas, USA: IEEE, 2010:4870-4873. 被引量:1
  • 10HE Y J,HAN J.Gaussian specific compensation for channel distortion in speech recognition [J].IEEE SIGNAL PROCESSING LETTERS, 2011, 18(10): 599-602. 被引量:1

二级参考文献33

  • 1刘朝山,马瑞萍,肖称贵,刘光斌.星图匹配制导中的关键技术[J].宇航学报,2006,27(1):31-35. 被引量:14
  • 2JAVIER R, PATRICIO L, PABLO Z. Applying SIFT Descriptors to Stellar Image Matching [C]. CIARP 2008, LNCS 5197, 2008: 618-625. 被引量:1
  • 3LIU R, ZHANG H. Stereo cameras self-calibra- tion based on SIFT [C]. Proc of International Conference on Measuring Technology and Mecha- tronics Automation. 2009 : 352-355. 被引量:1
  • 4LOWED G. Distinctive image features from scale- invariant keypoints[J]. International Journal of Computer Vision, 2004 : 91-110. 被引量:1
  • 5HERBERT B, ANDREAS Speeded up robust features and Image Understanding, E, TINNE T, et al: [J]. Computer Vision 2008,110(3) :346-359. 被引量:1
  • 6LUO J, OUBONG G. A comparison of SIFT, PCA-SIFT, and SURF [J].International Jour- nal of Image Processing (IJIP),2009, 3(4): 143-152. 被引量:1
  • 7ZHAI Y, ZENG L. A SIFT matching algorithm based on adaptive contrast threshold [C]. Pro- ceedings of 2011 International Conference on Consumer Electronics, Communications and Net works, 2011: 1934-1937. 被引量:1
  • 8曾峦,翟优.基于透视投影模型的SIFT匹配方法[C]. Proceedings of The 3rd International Con- ference on Computational Intelligence and Indus- trial Application, 2010 : 272-276. 被引量:1
  • 9http: / / www. astronomyphotos, corn/index, htm[OL]. 被引量:1
  • 10MICHEL D, OIKONOMIDIS I, ARGYROS A. Scale invariant and deformation tolerant partial shape matching [J]. Image and Vision Computing, 2011, 29(7): 459-469. 被引量:1

共引文献27

同被引文献142

引证文献18

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部