期刊文献+

加移动因子的C-V模型 被引量:3

The C-V model with motion factor
原文传递
导出
摘要 在变分水平集方法中,C-V模型的优点之一是能够提取以非梯度形式定义的图像边界,然而,在提取该类型边界时,模型仅考虑了图像各区域的均值信息而没有考虑图像的局部信息,因此尽管C-V模型能够得到渐进型边界图像的分割结果,但是存在分割误差。将移动因子引入到C-V模型以解决上述问题。其中移动因子定义为图像局部凸凹性的函数,通过该因子可以调整模型0-水平面的高度,进而使得解平面与目标所在平面更加接近或重合,以达到消除分割误差的目的。文中给出了偏微分形式的模型,并通过实验验证了模型的有效性。 One advantage of C-V model among the variational level set methods is that it can detect image boundaries which were not defined by gradient. However, when detecting these type boundaries, the C-V model only consider the mean value of each region without local information, so though the C-V model can get non-gradient defined image boundary, its segmentation result contains errors. The above problem is solved by importing the motion factor to the C-V model in this paper. Where, the motion factor is defined as a function of local convexities of image. By adjusting parameters of the motion factor, the novel model can adjust the height of its 0-level set, i.e., can make the 0-level set get close to the plane which the target belongs to, so can eliminate the partition errors. We present the partial differential model, and experiments validate the quality of the segmentations obtained.
出处 《中国图象图形学报》 CSCD 北大核心 2010年第11期1603-1607,共5页 Journal of Image and Graphics
基金 国家科技支撑项目(2008BAC34B03-4) 教育部数学 信息与行为重点实验室(LMIB)
关键词 C-V模型 水平集方法 图像分割 移动因子 C-V model level set method image segmentation motion factor
  • 相关文献

参考文献10

  • 1Osher S, Sethian J A. Fronts propagating with curvature dependent speed : algorithms based on hamilton-jacobi formulation [ J ]. Journal of Computational Physics, 1988, 79(1): 12-49. 被引量:1
  • 2Kass M,Witkin A,Terzopoulos D. Snakes: active contour models [ J ]. International Journal of Computer Vision, 1988,1 (4) : 321 -331. 被引量:1
  • 3Caselles V,Catte T, Coll T, et al. A geometric model for active contours in image processing [ J ]. Applied Numerical Mathematics,1993,66(1 ) : 1-31. 被引量:1
  • 4Caselles V, Kimmel R, Sapiro G. On geodesic active contours [ J]. International Journal of Computer Vision, 1997,22( 1 ) : 61 - 79. 被引量:1
  • 5Mumford D,Shah J. Optimal approximation by piecewise smooth functions and associated variational problems [ J ]. Communications on Pure and Applied Mathematics, 1989, 42(6) : 577-685. 被引量:1
  • 6Gao S,Tien D B. Image segmentation and selective smoothing by using Mumford-Shah model [ J]. IEEE Transctions on Image Processing, 2005,14(10): 1537 -1549. 被引量:1
  • 7Chan T F,Vese L A. Active contours without edges [J]. IEEE Transactions on Image Processing,2001,10 (2) : 266-277. 被引量:1
  • 8Chan T F, Sandberg B Y, Vese L A. Active contours without edges for vector-valued images [ J ]. Journal of Visual Communication and Image Representation, 2000, 11 ( 2 ) : 130- 141. 被引量:1
  • 9Li C, Huang R, Ding Z, Chris G, et al. A variational level set approach to segmentation and bias correction of images with intensity inhomogeneity [ M ]//Medical Image Computer-Assisted Intervention-MICCAI 2008. Berlin: Springer,2008 : 1083-1091. 被引量:1
  • 10Aubert G, Kornprobst P. Mathematical problems in image processing [ M ]//Partial Differential Equations and the Calculus of Variations. New York: Springer, 2002 : 150-211. 被引量:1

同被引文献24

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部