期刊文献+

基于Metropolis-Hastings变异的粒子群优化粒子滤波器 被引量:1

Particle Swarm Optimized Particle Filter Based on Metropolis-Hastings Mutation
下载PDF
导出
摘要 为了解决粒子滤波在粒子数量较少时估计精度不高的问题,提出了一种基于Metropolis-Hastings(MH)变异的粒子群优化粒子滤波算法。该算法将Metropolis-Hastings(MH)移动作为粒子群优化的变异算子,通过将MH变异规则与粒子群的速度-位置搜索过程相结合,使得重采样后的粒子群更接近真实的后验概率密度分布,有效解决了一般的变异粒子群算法容易发散的问题,加快了粒子滤波在序贯估计过程中的收敛速度,提高了其估计精度。仿真试验证明,基于MH变异的粒子群优化粒子滤波算法可以有效地克服粒子贫化现象,改善对非线性系统的跟踪估计效果。 A particle swarm optimized resampling method for particle filter based on Metropolis-Hastings(MH) mutation was proposed for improving estimation performance and particle impoverishment problem in the particle filter. The new algorithm chooses the MH moving as a mutation operator of particle swarm optimized, combines the mutation operator with velocity-position searching progress, and generates the particles so that their stationary distribution is a target posterior density. The new algorithm solves the problem of particle divergence effectively, speeds up the convergence rate,and improves the estimation precision. The simulation results show that the PSO resampling based on MH muta- tion can remove the degeneracy phenomenon and improve the tracking estimating effects in non-line system.
作者 路威 张邦宁
出处 《计算机科学》 CSCD 北大核心 2013年第06A期33-36,共4页 Computer Science
基金 国家自然科学基金(61001106) 国家"973"基金项目(2009CB320400) 中国博士后基金(20100470098)资助
关键词 粒子滤波 Metropolis-Hastings变异 粒子群优化 粒子重采样 Particle filter, Metropolis-hastings mutation, Particle swarm optimized, Particle resampling
  • 相关文献

参考文献12

二级参考文献38

  • 1莫以为,萧德云.基于进化粒子滤波器的混合系统故障诊断[J].控制与决策,2004,19(6):611-615. 被引量:23
  • 2杨小军,潘泉,王睿,张洪才.粒子滤波进展与展望[J].控制理论与应用,2006,23(2):261-267. 被引量:74
  • 3王小平 曹立明.遗传算法-理论、算法与软件实现[M].陕西西安:西安交通大学出版社,2002.105-107. 被引量:1
  • 4GORDON N J, SALMOND D J, SMITH A F M. Novel approach to non-linear/non-Gaussian bayesian state estimation[J]. IEEE Proceedings on Radar, Sonar and Navigation, 1993, 140(2): 107 - 113. 被引量:1
  • 5CRISAN D, DOUCET A. A survey of convergence results on particle filtering methods for practitioners [J]. IEEE Transactions on Signal Processing, 2002, 50(2): 736 - 746. 被引量:1
  • 6DOUCET A, GORDON N J. Sequential Monte Carol Methods in Practice[M]. New York: Springer-Verlag, 2001:247 - 272. 被引量:1
  • 7MERWE R V, DOUCET A, FRE1TAS N DE, et al. The unscented particle filter[R]//Technical Report of the Cambridge University Engineering Department CUED/F INFENG/TR, 380. England: Cambridge University Press, 2001:1 - 45. 被引量:1
  • 8RONGHUA L, BINGRONG H. Coevolution based adaptive Monte Carlo localization[J]. International Journal of Advanced Robotic Systems, 2004, 1(3): 183 - 190. 被引量:1
  • 9PARK S, HWANG J, ROU K, et al. A new particle filter inspired by biological evolution: genetic filter[C] //Proceedings of World Academy of Science, Engineering and Technology. Bangkok, Thailand: IEEE, 2007, 21:459-463. 被引量:1
  • 10UASAKI K, HATANAKA T. Evolution strategies based particle filters for fault detection[C]//Proceedings of the IEEE Symposium on Computational Intelligence in Image and Signal Processing. Hawaiian, USA: IEEE, 2007:58 - 65. 被引量:1

共引文献671

同被引文献19

  • 1方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 2Singhal S, Wu L C. Training muhilayer perceptrons with the extende Kalman algorithm [ C ]. Advances in neural information processing systems, Denver, Colo- rado, USA, 1989: 133-140. 被引量:1
  • 3Ruck D W, Rogers S K, Kabrisky M, et al. Compara- tive analysis of backpropagation and the extended Kal- man filter for training multilayer perceptrons [ J ]. IEEE Transactions on Pattern Analysis and Machine In- telligence, 1992, 14 (6): 686-691. 被引量:1
  • 4Gordon N J, Salmond D J, Smith A F M. Novel ap- proach to nonlinear/non-Gaussian Bayesian state estima- tion [J]. IEEE Proceedings F, 1993, 140 (2): 107 -113. 被引量:1
  • 5Moreno-Cano M V, Zamora-Izquierdo M A, Santa Jose, et al. An indoor localization system based on artificial neural networks and particle filters applied to intelligent buildings [ J]. Neurocomputing, 2013, 122: 116 - 125. 被引量:1
  • 6Zhang Miaohui, Xin Ming, Yang Jie. Adaptive multi- cue based particle swarm optimization guided particle filter tracking in infrared videos [ J]. Neurocomputing, 2013, 122. 163 - 171. 被引量:1
  • 7Wei Zhao, Tao Tao, Ding ZhuoShu. A dynamic particle filter-support vector regression method for reliability pre- diction [ J]. Reliability Engineering & System Safety, 2013, 119: 109-116. 被引量:1
  • 8Petar M Djuric, Jayesh H Kutecha, Jianqui Zhang, et al. Particle filtering [ J]. IEEE Signal Processing Mag- azine, 2003, 20 (5): 19-38. 被引量:1
  • 9KONG A, LIU J S, WONG W H. Sequential imputa- tions and Bayesian missing data problems [ J]. Journal of the American Statistical Association, 1994, 89 (425): 278 -288. 被引量:1
  • 10Akhtar S, Ahmad A R, Abdel-Rahman E M, et al. A PSO Accelerated Immune Particle Filter for Dynamic State Estimation [ C]. 2011 Canadian Conference on Computer and Robot Vision (CRV) , St. Johns, NL, 25-27 May, 2011:72-79. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部