期刊文献+

圆孔边界上弯折裂纹的奇异积分方程解法

Solution of Singular Integral Equation for Edge Bending Crack of Infinite Region Containing a Circular Hole
下载PDF
导出
摘要 借助弯折裂纹位错模型的奇异积分方程方法研究含圆孔无限大域中孔边弯折裂纹问题.利用数值积分公式求解相应的方程,并结合位错密度得到弯折裂纹尖端处的应力强度因子值.此方法可使用于更加复杂的裂纹问题. The edge bending crack problems are investigated using the singular integral equation ap- proach. The solution was made using the singular integral equations. The stress intensity factors at the crack tips were obtained. The proposed method can be used for more complex crack problems.
作者 徐冬 张蕾
出处 《佳木斯大学学报(自然科学版)》 CAS 2013年第3期443-445,共3页 Journal of Jiamusi University:Natural Science Edition
基金 山东省自然科学基金项目(ZR2012AQ026)
关键词 弯折裂纹 奇异积分方程 应力强度因子 bending crack singular integral equation stress intensity factor
  • 相关文献

参考文献10

  • 1Y. Z. Chen, Z. X. Wang. Solutions of Multiple Crack Problems of a Circular Region with Free or Fixed Boundary Condition in an Antiplane Elasticity [ J ]. Int. J. Fracture, 2004, 36 (4) : 501 -506. 被引量:1
  • 2C. P. Jiang,y. K. Cheung. A Special Bending Crack Tip Finite El- ement [ J]. International Journal of Fracture, 2004, 71:57 - 69. 被引量:1
  • 3Z. H. Tong,C. P. Jiang,S. H. Lo,et al. A Closed Form Solution to the Antiplane Problem of Doubly Periodic Cracks of Unequal Size in Piezoelectric Materials [ J ]. Mechanics of Materials, 2006, 38:296 - 286. 被引量:1
  • 4J. Z. Chen , W. C. Shen, W. An - Chien. Null - field Integral Equations for Stress Field around Circular Holes under Antiplane Shear[J]. Engineering Analysis with Boundary Elements, 2006 (30) :205 - 217. 被引量:1
  • 5X. L. Han, Femand Ellyin, XIA Zi - hui. Interface Crack be- tween Two Different Viscoelastic Media [ J ]. Int. J. Solids and Structures, 2001 (38) :7981 -7997. 被引量:1
  • 6Y. Z. Chen, N. Hasebe H. New Integration Scheme for the Branch Crack Problem[ J]. Engng Fracture Mech, 1995, 52: 791 - 801. 被引量:1
  • 7杜红珊,石少广,张蕾.弹性圆域中Ⅲ型分叉裂纹的应力强度因子[J].山东大学学报(理学版),2007,42(9):101-106. 被引量:1
  • 8李福林.反平面弹性中半平面多边缘裂纹问题的奇异积分方程解法[M].江苏大学硕士论文,2005. 被引量:1
  • 9王钟羡,张蕾.反平面弹性圆形域边缘裂纹奇异积分方程方法[J].江苏大学学报(自然科学版),2006,27(3):266-269. 被引量:2
  • 10A. V. Boiko, L. N. Karpenko. On Some Numerical Methods for the Solution of Plane Elasticity Problem for Bodies with Cracks by Means of Singular Integral Eqution [ J ]. Int. J. Fracture, 1981,17:381 -388. 被引量:1

二级参考文献16

  • 1王钟羡.纵向均布剪力作用下带尖点孔口的应力强度因子[J].江苏理工大学学报(自然科学版),1995,16(2):79-85. 被引量:2
  • 2陈宜周,王钟羡,王飞.反平面弹性分叉裂纹问题的奇异积分方程解法[J].江苏大学学报(自然科学版),2005,26(5):453-456. 被引量:4
  • 3CHEN Yi-zhou.Solution of multiple crack problems of a circular plate or an infinite plate containing a circular hole by using Fredholm integral equation approach[J].Int J Fracture,1984,27:155-168. 被引量:1
  • 4CHEN Yi-zhou,WANG Zhong-xian.Solutions of multiple crack problems of a circular region with free or fixed boundary condition in an antiplane elasticity[J].Int J Fracture,2004,36 (4):501-506. 被引量:1
  • 5Tong Z H,Jiang C P,Lo S H,et al.A closed form solution to the antiplane problem of doubly periodic cracks of unequal size in piezoelectric materials[J].Mechanics of Materials,2006,38:286-296. 被引量:1
  • 6CHEN Yi-zhou,Hasebe N.New integration scheme for the branch crack problem[J].Engi Fracture Mech,1995,52:791-801. 被引量:1
  • 7Boiko A V,Karpenko L N.On some numerical methods for the solution of plane elasticity problem for bodies with cracks by means of singular integral equation[J].Int J Fracture,1981,17:381-388. 被引量:1
  • 8CHEN Yizhou. Solution of multiple crack problems of a circular plate or an infinite plate containing a circular hole by using Fredholm integral equation approach [J]. Int J Fracture, 1984, 27 : 155-168. 被引量:1
  • 9CHEN Yizhou, WANG Zhongxian. Solutions of multiple crack problems of a circular region with free or fixed boundary condition in an antiplane elasticity[J]. Int J Fracture, 2004,36(4):501-506. 被引量:1
  • 10TONG Z H, JIANG C P, LOS H, et al. A closed form solution to the antiplane problem of doubly periodic cracks of unequal size in piezoelectric materials[J]. Mechanics of materials, 2006,38:296-286. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部