期刊文献+

OsMADS16 Genetically Interacts with OsMADS3 and OsMADS58 in Specifying Floral Patterning ~in Rice 被引量:13

OsMADS16 Genetically Interacts with OsMADS3 and OsMADS58 in Specifying Floral Patterning ~in Rice
原文传递
导出
摘要 Rice (Oryza sativa) has unique floral patterns that contribute to grain yield. However, the molecular mechanism underlying the specification of floral organ identities in rice, particularly the interaction among floral homeotic genes, remains poorly understood. Here, we show that the floral homeotic gene OsMADS16 (also called SUPERWOMAN1, SPWl, a B-class gene) acts together with the rice C-class genes OsMADS3 and OsMADS58 in specifying floral organ patterning. OsMADS16 and the two C-class genes have an overlapping expression pattern in the third whorl founder cells. Compared with the single mutants, both spwl-1 osmads3-4 and spwl-1 osmads58 double mutants exhibit additional whorls of glume-like organs within the flower, particularly an extra whorl of six glume-like structures formed at the position of the wild-type stamens. These ectopic glume-like structures were shown to have palea identity through cellular observation and in situ hybridization analysis using marker genes. Our results suggest that B- and C-class genes play a key role in suppressing indeterminate growth within the floral meristem, particularly whorl-3 primordia. We also hypothesize that, in contrast to previous assumptions, the specialized spikelet organ in rice, the palea, is the counterpart of the sepal in eudicots, and the lemma is homologous to the bract. Rice (Oryza sativa) has unique floral patterns that contribute to grain yield. However, the molecular mechanism underlying the specification of floral organ identities in rice, particularly the interaction among floral homeotic genes, remains poorly understood. Here, we show that the floral homeotic gene OsMADS16 (also called SUPERWOMAN1, SPWl, a B-class gene) acts together with the rice C-class genes OsMADS3 and OsMADS58 in specifying floral organ patterning. OsMADS16 and the two C-class genes have an overlapping expression pattern in the third whorl founder cells. Compared with the single mutants, both spwl-1 osmads3-4 and spwl-1 osmads58 double mutants exhibit additional whorls of glume-like organs within the flower, particularly an extra whorl of six glume-like structures formed at the position of the wild-type stamens. These ectopic glume-like structures were shown to have palea identity through cellular observation and in situ hybridization analysis using marker genes. Our results suggest that B- and C-class genes play a key role in suppressing indeterminate growth within the floral meristem, particularly whorl-3 primordia. We also hypothesize that, in contrast to previous assumptions, the specialized spikelet organ in rice, the palea, is the counterpart of the sepal in eudicots, and the lemma is homologous to the bract.
出处 《Molecular Plant》 SCIE CAS CSCD 2013年第3期743-756,共14页 分子植物(英文版)
基金 This work was supported by funds from the National Natural Science Foundation of China (31230051 31110103915) National Key Basic Research Developments Program, Ministry of Science and Technology, China (2013CB126902) 863 Hitech Project, Ministry of Science and Technology,China (2011AA10A101 2012AA10A302) the Science and Technology Commission of Shanghai Municipality (10JC1406400 10DZ2294100 11JC1404900) and National Transgenic Major Program (2011ZX08009-003-003). Ludovico Dreni is supported by the BIOGESTECA program financed by the Lombardy region.The authors gratefully acknowledge Drs Hajime Sakai and Yasuo Nagato for providing spwl-1, Dr Venkatesan Sundaresan for providing osmads58, Zhijing Luo and Mingjiao Chen for mutant screening and generation, and Alessandro Merisio for the assistance in in situ analysis. No conflict of interest declared.
关键词 RICE FLOWER B and C genes genetic interaction stamen identity. rice flower B and C genes genetic interaction stamen identity.
  • 相关文献

参考文献3

二级参考文献27

  • 1FAN JinHui1, LI WenQing2, DONG XiuChun1, GUO Wei1 & SHU HuaiRui3 1 College of Forestry, Shandong Agricultural University, Taian 271018, China,2 College of Biological Science, China Agricultural University, Beijing 100094, China,3 College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China.Ectopic expression of a hyacinth AGL6 homolog caused earlier flowering and homeotic conversion in Arabidopsis[J].Science China(Life Sciences),2007,50(5):676-689. 被引量:13
  • 2Chang-BinCHEN,Yun-YuanXU,HongMA,KangCHONG.Cell Biological Characterization of Male Meiosis and Pollen Development in Rice[J].Journal of Integrative Plant Biology,2005,47(6):734-744. 被引量:11
  • 3王莹,王幼芳,张大兵.水稻msp1-4突变体的鉴定及其UDT1和GAMYB基因的表达分析[J].植物生理与分子生物学学报,2006,32(5):527-534. 被引量:13
  • 4Zhi-Xiong Chen,Jian-Guo Wu,Wo-Na Ding,Han-Ming Chen,Ping Wu,Chun-Hai Shi.Morphogenesis and molecular basis on naked seed rice, a novel homeotic mutation of OsMADS1 regulating transcript level of AP3 homologue in rice[J].Planta.2006(5) 被引量:1
  • 5Liangran Zhang,Jiayi Tao,Shunxin Wang,Kang Chong,Tai Wang.The Rice OsRad21-4, an Orthologue of Yeast Rec8 Protein, is Required for Efficient Meiosis[J].Plant Molecular Biology.2006(4) 被引量:1
  • 6Ganesh Kumar Agrawal,Kiyomi Abe,Muneo Yamazaki,Akio Miyao,Hirohiko Hirochika.Conservation of the E-function for Floral Organ Identity in Rice Revealed by the Analysis of Tissue Culture-induced Loss-of-Function Mutants of the OsMADS1 Gene[J].Plant Molecular Biology.2005(1) 被引量:1
  • 7Zhen Wang,Yu Liang,Chijun Li,Yunyuan Xu,Lefu Lan,Dazhong Zhao,Changbin Chen,Zhihong Xu,Yongbiao Xue,Kang Chong.Microarray Analysis of Gene Expression Involved in Anther Development in rice (Oryza sativa L.)[J].Plant Molecular Biology.2005(5) 被引量:1
  • 8Lefu Lan,Wei Chen,Ying Lai,Jinfeng Suo,Zhaosheng Kong,Can Li,Ying Lu,Yujun Zhang,Xiangyu Zhao,Xiansheng Zhang,Yansheng Zhang,Bin Han,Jing Cheng,Yongbiao Xue.Monitoring of Gene Expression Profiles and Isolation of Candidate Genes Involved in Pollination and Fertilization in Rice (Oryza Sativa L.) with a 10K cDNA Microarray[J].Plant Molecular Biology.2004(4) 被引量:1
  • 9K.-I. Nonomura,M. Nakano,K. Murata,K. Miyoshi,M. Eiguchi,A. Miyao,H. Hirochika,N. Kurata.An insertional mutation in the rice PAIR2 gene, the ortholog of Arabidopsis ASY1, results in a defect in homologous chromosome pairing during meiosis[J].Molecular Genetics and Genomics.2004(2) 被引量:1
  • 10Sichul Lee,Jong-Seong Jeon,Kyungsook An,Yong-Hwan Moon,Sanghee Lee,Yong-Yoon Chung,Gynheung An.Alteration of floral organ identity in rice through ectopic expression of OsMADS16[J].Planta.2003(6) 被引量:1

共引文献131

同被引文献84

引证文献13

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部