期刊文献+

隧穿量子点分子Jaynes-cummings模型的Berry相位 被引量:2

Berry Phase in Jaynes-cummings Model for a Tunneling Quantum-dot Molecule
下载PDF
导出
摘要 为了给量子系统的几何相位调控提供建议,利用全量子理论研究了一个隧穿双量子点分子与量子化单模场相互作用系统的Berry相位,探讨了量子场平均光子数、场-量子点失谐量、隧穿能级失谐量、隧穿强度以及场-量子点线性和非线性耦合对系统几何相位的影响.数值计算结果表明,在系统本征能级反交差区域附近,可以通过调节外加在量子点分子上的电压方便地对系统的Berry相位实现高效调控,这一结论在实现量子计算方面有潜在应用价值. plores In order to provide advice on the control of the geometric Berry phase in a tunneling double-quantum-dot molecule mode field by the full quantum theory. Effects of parameters, such phase of a quantum system, it ex- interacting with a quantized singleas the mean photon number of the field, field-dot detuning, tunneling energy-level detuning, linear and nonlinear field-dot coupling, on the geometric phase were researched. The results show that in the region where anticrossing of the eigenenengy levels of the system occurs, the Berry phase can be efficiently controlled by adjusting the applied voltage exerted on the quantum-dot molecule. The conclusion may be applied in quantum computation.
作者 周青春 周昱
出处 《广东工业大学学报》 CAS 2013年第2期18-21,共4页 Journal of Guangdong University of Technology
基金 国家自然科学基金资助项目(11205071)
关键词 BERRY相位 量子点 量子化场 Berry phase quantum dot quantized field
  • 相关文献

参考文献18

  • 1Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society A, 1984, 392(3) :45-47. 被引量:1
  • 2Aharonov Y, Anandan J. Phase change during a cyclic quantum evolution[Jl. Physical Revew Letters, 1987, 58 (16) : 1593-1596. 被引量:1
  • 3Samuel J, Bhandari R. General setting for Berry' s phase [ J ]. Physical Revew Letters, 1988, 60 (23) : 2339-2342. 被引量:1
  • 4Suter D, Chingas G, Harris R, et al. Berry phase in mag- netic resonance [ J ]. Molecular Physics, 1987, 61 (6) : 1327-1340. 被引量:1
  • 5Chiao R Y, Antaramian A, Ganga K M, et al. Observation of a topological phase by means of nonplanar Mach-Zehnder interferometer [ J ]. Physical Revew Letters, 1988, 60 (13) : 1214-1217. 被引量:1
  • 6Wang Z S. Geometric quantum computation and dynamical invariant operators [J]. Physical Review A, 2009, 79: 024304. 被引量:1
  • 7Wang Z S, Liu G Q, Ji Y H. Noncyclic geometric quantum computation in a nuclear-magnetic-resonance system [ J ]. Physical Revew A, 2009, 79: 054301. 被引量:1
  • 8Tong D M, Sjqvist E, Kwek L C, et al. Kinematic Ap- proach to the Mixed State Geometric Phase in Nonunitary Evolution[ Jl. Physical revie Letters, 2004, 93: 080405. 被引量:1
  • 9Wang Z S, Wu C, Feng X L, et al. Effects of a squeezed- vacuum reservoir on geometric phase [ J ]. Physical Review A, 2006, 75: 024102. 被引量:1
  • 10Carollo A, Palma G M, Lozinski A, et al. Geometric phase induced by a cyclically evolving squeezed vacuum reservoir [ J ] 150403. Physical Revew Letters, 2006, 96. 被引量:1

同被引文献21

  • 1Vahala K.Optical microcavities[J].Nature,2003,224:839-846. 被引量:1
  • 2Raimond J,Brune M,Haroche S.Manipulating quantum entanglement with atoms and photons in a cavity[J].Rev Mod Phys,2001,73(3):565-580. 被引量:1
  • 3Cho J,Angelakis D G,Bose S.Heralded generation of entanglement with coupled cavities[J].Phys Rev A,2008,78 (2):022323. 被引量:1
  • 4Fidio C D,Vogel W.Entanglement signature in the mode structure of a single photon[J].Phys Rev A,2009,79(5):050303 (R). 被引量:1
  • 5Song J,Song X D,Xia Y,et al.Efficient creation of continuous-variable entanglement for two atomic ensembles in coupled cavities[J].Phys Rev A,2011,83 (5):052309. 被引量:1
  • 6Shen L T,Yang Z B,Wu H Z,et al.Control of two-atom entanglement with two thermal fields in coupled cavities[J].J Opt Soc Am B,2012,29(9):2379-2385. 被引量:1
  • 7Sivakumar S.Entanglement of fields in coupled cavities:Effects of pumping and fluctuations[J].Phys Lett A,2010,374(15-16):1793-1799. 被引量:1
  • 8Li W Z,Zhang C L,Shen L T,et al.Entanglement dynamics and maitaenance for two atoms in coupled cavities[J].Opt Commun,2014,315:213-219. 被引量:1
  • 9Ogden C D,Irish E K,Kim M S.Dynamics in a coupledcavity arry[J].Phys Rev A,2008,78(6):063805. 被引量:1
  • 10Benyoucef M,Kiravittaya S,Mei Y F,et al.Strongly coupled semiconductor microcavities:A route to couple artificial atoms over micrometric distances[J].Phys Rev B,2008,77(3):035108. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部