期刊文献+

进化算法漂移分析基本定理的改进与证明

Improvement and proof of fundamental theorem in drift analysis of evolutionary algorithms
下载PDF
导出
摘要 漂移分析的基本定理存在缺陷:条件过严、证明有误且不够严格等,而这些缺陷一直未见指出。鉴于该定理是漂移分析的核心和理论基础,很有必要加以严格化。指出了该定理的不足之处,以测度论为工具,对该定理进行了适当的修正与改进,并且给出了一个新的严格的证明。 The fundamental theorem in the drift analysis remained defective: the condition was too strict,the proof contained some errors and was not rigorous,etc.and these defects have not been pointed out.It is necessary to make the theorem more rigorous considering the theorem is the core and theoretical foundation of drift analysis.This paper pointed out the defects in the original theorem,used measure theory as tool to amend and improve the theorem and presented a new and rigorous proof.
出处 《计算机应用研究》 CSCD 北大核心 2013年第6期1685-1687,1723,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61070033) 国家教育部博士点基金资助项目(20090172120035) 中央高校科研业务费重点项目(2012ZM0083) 广东商学院校级科研项目(12YB52001)
关键词 进化算法 漂移分析 时间复杂度 理论基础 evolutionary algorithms drift analysis time complexity theoretical foundation
  • 相关文献

参考文献11

  • 1DROSTE S, JANSEN T, WEGENER I. On the analysis of the ( 1 + 1 ) evolutionary algorithm [ J ]. Theoretical Computer Science, 2002,276(1-2) : 51-81. 被引量:1
  • 2YAO Xin. Unpacking and understanding evolutionary algorithms [ C]//LNCS, vol 7311. Berlin: Springer-Verlag,2012 : 60-76. 被引量:1
  • 3HE Jun, YAO Xin. Drift analysis and average time complexity of evolutionary algorithms[J]. Artificial Intelligence,2001,127( 1 ) : 57-85. 被引量:1
  • 4HE Jun, YAO Xin. A study of drift analysis for estimating computation time of evolutionary algorithms[ J]. Natural Computing ,2004,3 (1): 21-35. 被引量:1
  • 5覃俊,康立山.一个多目标优化演化算法的收敛性分析框架[J].计算机应用研究,2005,22(2):68-70. 被引量:6
  • 6Pietro S.Oliveto.Time Complexity of Evolutionary Algorithms for Combinatorial Optimization:A Decade of Results[J].International Journal of Automation and computing,2007,4(3):281-293. 被引量:5
  • 7OLIVETO P S, WITI" C. Simplified drift analysis for proving lower bounds in evolutionary computation [ J ]. Algorithmica, 2011,59 (3) : 369-386. 被引量:1
  • 8JAGERSKUPPER J. Combining markov-chain analysis and drift analysis : the ( 1 +1 ) evolutionary algorithm on linear functions reloaded [ J]. Algorithmica,2011,59(3 ) :409-424. 被引量:1
  • 9LEHRE P K, YAO Xin. Runtime analysis of the ( 1 + 1 ) EA on computing unique input output sequences [ C ] //Proc of IEEE Congress on Evolutionary Computation. 2007 : 1882-1889. 被引量:1
  • 10CHEN Tian-shi, HE Jun, SUN Guang-zhong, et al. A new approach for analyzing average time complexity of population-based evolutionary algorithms on unimodal problems [J]. IEEE Trans on System, Man, and Cybernetics, Part B: Cybernetics ,2009,39 (5) : 1092- 1106. 被引量:1

二级参考文献14

  • 1Yan Zhenyu, Kang Lishan. Do Search and Selection Operator Play Important Roles in Multi-objective Optimization: A Case Study [ J].Wuhan University Journal of Natural Sciences,2003,54(8 ). 被引量:1
  • 2Kalyanmoy Deb. Multi-objective Optimization Using Evolutionary Algorithms[ M] Chichester: John Wiley & Sons Ltd, 2001.34-76. 被引量:1
  • 3Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele. Comparison of Multiobjective Evolutionary Algorithms : Empirical Result [J]. Evolutionary Computation,2000,8 (2) : 173- 195. 被引量:1
  • 4Daid A, Van Veldhuizen, Gary B Lamont. Multi-objective Evolurionary Algorithms: Analyzing the State-of-the-Art [ A ]. Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, T Meyarivan. A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-objective Optimization : NSGA-Ⅱ [ C ]. Paris, France : Proceedings of the Parallel Problem Solving from Nature Ⅵ Conference,2000. 849-858. 被引量:1
  • 5G Rudolph, A Agapie. Convergence Properties of Some Multi-objective Evolutionary Algorithm [ C ]. Seoul, Korea: Proceedings of the 2001 IEEE Congress on Evolutionary Computation,2001.27-30. 被引量:1
  • 6Frank Neumann,Ingo Wegener.Minimum spanning trees made easier via multi-objective optimization[J].Natural Computing.2006(3) 被引量:1
  • 7Jun He,Xin Yao.A study of drift analysis for estimating computation time of evolutionary algorithms[J].Natural Computing.2004(1) 被引量:1
  • 8V.Cutello,G.Nicosia,P.S.Oliveto,M.Romeo.On the Convergence of Immune Algorithms[]..2007 被引量:1
  • 9J.He.Study on the Foundation of Evolutionary Computa- tion[]..1998 被引量:1
  • 10J.H.Holland.Adaptation in Natural and Artificial Sys- tems,2nd ed[]..1992 被引量:1

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部