期刊文献+

受内压的超塑性薄壁圆筒的理论断裂时间分析 被引量:2

ANALYSIS OF THEORY FRACTURE TIMES OF SUPERPLASTIC THIN WALLED CYLINDER WITH INTERNAL PRESSURE
下载PDF
导出
摘要 超塑性材料具有伸长率非常高,可以成形复杂构件等优点,已得到广泛应用。研究超塑性材料薄壁圆筒受内压的应力和应变率,导出壁厚变化和理论断裂时间计算公式,讨论不同材料壁厚和理论断裂时间的变化规律。计算结果表明:(1)圆筒越薄,理论断裂时间越小,越容易断裂。(2)应变速率敏感性指数m值与成形时间关系很大,m值增大使尺寸不同的材料的成形时间之间的差别趋于减小。(3)压力越大,理论断裂时间越小。当压力增大时,不同m值的理论断裂时间之间的差别趋于减小。(4)成形开始时,壁厚变化速度较慢;当成形时间接近理论断裂时间时,壁厚变化速度急剧增大。 Superplastic materials have advantages like high elongation, forming complex structures easily and so on, thus they have been widely used. Stresses and strain rates of superplastic thin walled cylinder under internal pressure were studied. Wall thickness variation and theory fracture times were derived. Yariation of different materials on wall thickness and theory fracture times was discussed. The results show that, (1) A thinner walled cylinder has a smaller theory fracture time, namely, the cylinder breaks more easily. (2) Strain-rate sensitivity index m has a lot to do with forming time. The m value increase enables forming time difference between different sizes of materials to tend to reduce. (3) The greater the pressure, the smaller the theoretical fracture time. The pressure increase enables theo~.'y ti'acture times ditt'erence between different m values to tend to reduce. (4) Wall thickness variation is slow at the beginning of torming. When forming time close to theory fi'acture time, wall thickness variation rate increases rapidly.
出处 《机械强度》 CAS CSCD 北大核心 2013年第3期372-375,共4页 Journal of Mechanical Strength
基金 淮海工学院2011年自然科学类校内课题资助(Z2011132)
关键词 超塑性 应变速率敏感性指数 薄壁圆筒 理论断裂时间 厚度比 Snperplasticity Strain-rate sensitivity index Thin walled cylinder Theory fracture time Thickness ratio
  • 相关文献

参考文献15

  • 1Cheong B H , Lin J , Ball A A. Modelling the effects of grain-sizegradients on necking in superplastic forming [ J ] . Journal ofMaterials Processing Technology , 2003 , 134( 1 ) ; 10-18. 被引量:1
  • 2文九巴等编著..超塑性应用技术[M].北京:机械工业出版社,2005:306.
  • 3王祖唐等编著..金属塑性成形理论[M].北京:机械工业出版社,1989:548.
  • 4卡依勃舍夫OA.王燕文,译.金属的塑性和超塑性[M].北京:机械工业出版社,1982:102-110. 被引量:5
  • 5超塑性研究会编,康达昌译..超塑性与金属加工技术[M].北京:机械工业出版社,1985:272.
  • 6Donghai Cheng, Jihua Huang, Xingke Zhao, Hua Zhang.Microstructure and superplasticity of laser welded Ti-6A1-4V alloy[J]. Materials & Design,2010,31 (1) : 620-623. 被引量:1
  • 7Costa Mattos H S, Minak G,Gioacchino F Di, Solda A. Modelingthe superplastic behavior of Mg alloy sheets under tension using acontinuum damage theory [ J] . Materials & Design , 2009,30(5):1674-1679. 被引量:1
  • 8Hart E W. Theory of the tensile test [ J ] . Acta Metallurgica,1967,15(2) : 351-355. 被引量:1
  • 9李跃宇,刘树春,汪冰,等.超塑性材料弯曲成形的应力分析[J].淮海工学院学报,2005,14(3):16-18. 被引量:3
  • 10李跃宇,舒小平,刘树春,汪冰.超塑性材料的镦粗变形力的研究[J].锻压技术,2005,30(5):9-12. 被引量:7

二级参考文献25

  • 1金泉林.超塑变形的力学行为与本构描述[J].力学进展,1995,25(2):260-275. 被引量:6
  • 2宋玉泉 赵军 等.超塑胀形光电测量实验装置[J].金属科学与工艺,1985,3(3):89-94. 被引量:3
  • 3汪大年.金属塑性成型原理[M].北京:机械工业出版社,1982.. 被引量:5
  • 4Holt D L.An analysis of the bulging of a superplastic s heet by lateral pressure.Int J Mech Sci,1970,12:491 被引量:1
  • 5Backofen W A,et al.Superplasticity in an Al-Zn Alloy.Trans AS M Quart,1964,57:980 被引量:1
  • 6Ghosh A K,et al.Superplastic forming of a long rectangular box section-analysis and experiment.In:Altan T ed.Process Modeling-Fundamentals and Applications to Metals,Ohio:American Society for Metals,Metals Park,198 0.303 被引量:1
  • 7Ragab A R.Thermoforming of superplastic sheet in shaped dies.Me tals Technology,1980,10:340 被引量:1
  • 8Chen Y,et al.Numerical analysis of superplastic blow forming of Ti -6Al-4V alloys.Mater Design,2001,22:679 被引量:1
  • 9Carrino L,et al.Analysis of superplastic bulge forming by the f inite element method.Mater Technol,2001,16 (4):237 被引量:1
  • 10Zhang L,et al.Application of rigid-plastic meso-damage const itu-tive theor y to superplastic bulge forming.Mater Sci Technol,2002,18(11):13 99 被引量:1

共引文献10

同被引文献19

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部