期刊文献+

Protective effect of oxysophoridine on cerebral ischemia/reperfusion injury in mice 被引量:5

Protective effect of oxysophoridine on cerebral ischemia/reperfusion injury in mice
下载PDF
导出
摘要 Oxysophoridine, a new alkaloid extracted from Sophora alopecuroides L., has been shown to have a protective effect against ischemic brain damage. In this study, a focal cerebral ischemia/reperfusion injury model was established using middle cerebral artery occlusion in mice. Both 62.5, 125, and 250 mg/kg oxysophoridine, via intraperitoneal injection, and 6 mg/kg nimodipine, via intragastric administration, were administered daily for 7 days before modeling. After 24 hours of reperfusion, mice were tested for neurological deficit, cerebral infarct size was assessed and brain tissue was collected. Results showed that oxysophoridine at 125, 250 mg/kg and 6 mg/kg nimodipine could reduce neurological deficit scores, cerebral infarct size and brain water content in mice. These results provided evidence that oxysophoridine plays a protective role in cerebral ischemia/reperfusion injury. In addition, oxysophoridine at 62.5, 125, and 250 mg/kg and 6 mg/kg nimodipine increased adenosine-triphosphate content, and decreased malondialdehyde and nitric oxide content. These compounds enhanced the activities of glutathione-peroxidase, superoxide dismutase, catalase, and lactate dehydrogenase, and decreased the activity of nitric oxide synthase Protein and mRNA expression levels of N-methyI-D-aspartate receptor subunit NR1 were markedly inhibited in the presence of 250 mg/kg oxysophoridine and 6 mg/kg nimodipine. Our experimental findings indicated that oxysophoridine has a neuroprotective effect against cerebral ischemia/reperfusion injury in mice, and that the effect may be due to its ability to inhibit oxidative stress and expression of the N-methyI-D-aspartate receptor subunit NR1. Oxysophoridine, a new alkaloid extracted from Sophora alopecuroides L., has been shown to have a protective effect against ischemic brain damage. In this study, a focal cerebral ischemia/reperfusion injury model was established using middle cerebral artery occlusion in mice. Both 62.5, 125, and 250 mg/kg oxysophoridine, via intraperitoneal injection, and 6 mg/kg nimodipine, via intragastric administration, were administered daily for 7 days before modeling. After 24 hours of reperfusion, mice were tested for neurological deficit, cerebral infarct size was assessed and brain tissue was collected. Results showed that oxysophoridine at 125, 250 mg/kg and 6 mg/kg nimodipine could reduce neurological deficit scores, cerebral infarct size and brain water content in mice. These results provided evidence that oxysophoridine plays a protective role in cerebral ischemia/reperfusion injury. In addition, oxysophoridine at 62.5, 125, and 250 mg/kg and 6 mg/kg nimodipine increased adenosine-triphosphate content, and decreased malondialdehyde and nitric oxide content. These compounds enhanced the activities of glutathione-peroxidase, superoxide dismutase, catalase, and lactate dehydrogenase, and decreased the activity of nitric oxide synthase Protein and mRNA expression levels of N-methyI-D-aspartate receptor subunit NR1 were markedly inhibited in the presence of 250 mg/kg oxysophoridine and 6 mg/kg nimodipine. Our experimental findings indicated that oxysophoridine has a neuroprotective effect against cerebral ischemia/reperfusion injury in mice, and that the effect may be due to its ability to inhibit oxidative stress and expression of the N-methyI-D-aspartate receptor subunit NR1.
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第15期1349-1359,共11页 中国神经再生研究(英文版)
基金 supported by the National Natural Science Foundation of China, No. 30960506, 81160524 the Natural Science Foundation of Ningxia Hui Autonomous Region, No. NZ11212 the Key Scientific Research Project of Ningxia Hui Autonomous Region Health Department, No. 2012152 the Project of Ningxia Medical University, No. XM2011017
关键词 neural regeneration traditional Chinese medicine brain injury OXYSOPHORIDINE ischemia/reperfusion injury oxidative stress N-methyI-D-aspartate receptor NEUROPROTECTION grants-supported paper NEUROREGENERATION neural regeneration traditional Chinese medicine brain injury oxysophoridine ischemia/reperfusion injury oxidative stress N-methyI-D-aspartate receptor neuroprotection grants-supported paper neuroregeneration
  • 相关文献

参考文献6

二级参考文献48

共引文献43

同被引文献54

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部