期刊文献+

基于无线局域网MAC层DOS攻击的入侵检测 被引量:3

Intrusion Detection Based on DOS Attack in MAC Layer
下载PDF
导出
摘要 为了检测无线局域网MAC层的6种DOS攻击方式,提出一种基于Hybrid特征选择和支持向量机的入侵检测算法。该算法先用混合器模式的Hybrid特征选择算法提取8个识别攻击的流量统计特征,然后利用支持向量机对待检测对象进行识别分类。通过建立仿真环境对检测模型的检测效果进行统计验证,表明检测模型在具有较高检测准确率和较低的虚警率,能够有效地检测MAC层DOS攻击,具有实用价值。 A new intrusion detection algorithm based on Hybrid feature selection is proposed to detect denial of service (DOS) attack in media access control(MAC) layer of WLAN. Firstly, this method uses Hybrid featureselect algorithm to collect 8 traffic statistical features to distinguish attacks, and then it uses support vector machine support vector machine(SVM) to classify the test data. Accordingly, the simula- tion environment is built to verify the test efficiency. The experimental result shows that the scheme makes a high detection rate and low false alarm. It is effective to test the DOS attacks in MAC layer.
出处 《现代防御技术》 北大核心 2013年第3期75-80,105,共7页 Modern Defence Technology
关键词 无线局域网 介质访问层 拒绝服务攻击 特征选择 支持向量机 入侵探测 WLAN media access control (MAC) layer denial of service (DOS) attack feature selection support vector machine (SVM) intrusion detection
  • 相关文献

参考文献12

  • 1郭渊博等著..无线局域网安全 设计及实现[M].北京:国防工业出版社,2010:234.
  • 2张明雷..无线局域网中DoS攻击的检测和防御方法研究[D].解放军信息工程大学,2010:
  • 3杨哲.SSID广播关闭的利与弊[EB/OL]. (2009 -03 -20) [ 2012 -03 -08]. http : // security, chinaitlab. com/solution/779649_4. html. 被引量:1
  • 4MARK A H. Correlation-Based Feature Selection for Dis-crete and Numeric Class Machine Learning [ C ] // Proc ofthe 17th Inti Conf on Machine Learning, 2000 : 359 -366. 被引量:1
  • 5Vladimir N Vapnik. The Nature of Statistical LearningTheory [ M ]. Springer Press : 2nd ed. Maple-Vall BookManufacturing Group, York, 2000. 被引量:1
  • 6Matthew Gast. 802. 11 Wireless Networks : The Defini-tive Guid [ M]. New York: O’ Reilly, Southeast Univer-sity Press,2006. 被引量:1
  • 7Mina Malekzadehl. An Experimental Evaluation of DoSAttack and Its Impact on Throughput of IEEE 802. 11Wireless Networks [ J ] . IJCSNS International Journal ofComputer Science and Network Security,2008 ,8(8) : 3-8. 被引量:1
  • 8刑明.无线破解攻击工具Aircmck-ng使用详解[EB/OL]. (2009 -07 -27) [2012 -12 - 21 ]. http ://blog.csdn. net/MHY _ MHY/archive/2008/11/07/3244543.aspx. 被引量:1
  • 9LIU H,YU L. Towards Integrating Feature Selection Al-gorithms for Classification and Clustering [ J ]. IEEETrans on Knowledge and Data Engineering. 2005,17(3):1-12. 被引量:1
  • 10陈云.Clamns算法[EB/OL]. (2006 -11 -28) [2011-06 - 01 ]. http : // wk. baidu. com/view/1 fl e56f5ba0d 4a 7302763 af6. html. 被引量:1

二级参考文献1

共引文献2267

同被引文献8

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部