期刊文献+

快速路交通事件检测方法 被引量:5

Traffic incident detection algorithm for expressway
下载PDF
导出
摘要 为了提出一种适用于任何流量并具有较高检测率和较低误警率的快速路交通事件检测算法,以统计理论、突变理论为基础,设计了事件影响指数检测算法.利用交通量数据,检验纵向时间序列与横向时间序列上流量的波动性和正态拟合性;分析事件数据与非事件数据的差异,得出交通事件数据变化特征.分析结果表明:纵向时间序列的波动性和正态拟合性优于横向时间序列;事件数据具有多模态、不可达、突跳等突变性特征.该算法误警率为0,检测率比经典的Cali-fornia算法高出10%.不同流量下的检测效果对比表明,该算法适用于各种流量,低流量状态下的检测效果更好. In order to put forward a novel traffic incident detection algorithm for expressway which can apply to any traffic volume with a high detection rate and a low false alarm rate,an incident influence index detection algorithm is designed based on the statistical theory and the catastrophe theory.The stability and normal goodness-of-fit of longitudinal time series and transverse time series are tested using traffic volume data.The characteristics of traffic incident data are obtained by analyzing the difference between incident data and non-incident data.Analysis results show that the stability and normal goodness-of-fit of longitudinal time series are much better than those of transverse time series,and traffic incident data exhibits multi-modal,unreachable,and sudden jump characteristics.Compared with the California algorithm,the false alarm rate of the proposed algorithm is 0,and the detection rate is 10% higher than that of the California algorithm.The comparison of detection results under different volumes shows that the proposed algorithm is suitable for any volumes,and the detection effect under low volume is even better.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第3期649-653,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(51078232)
关键词 交通事件 快速路 环形线圈 纵向时间序列 突变理论 事件检测 traffic incident expressway loop coil longitudinal time series catastrophe theory incident detection
  • 相关文献

参考文献14

  • 1唐海雯.实时监控 及时处置 为排堵保畅做贡献[J].交通与运输,2006(2):10-11. 被引量:1
  • 2姬杨蓓蓓,张小宁,孙立军.基于贝叶斯决策树的交通事件持续时间预测[J].同济大学学报(自然科学版),2008,36(3):319-324. 被引量:25
  • 3Payne H J,Helfenbein E D,Knobel H C. Developmentand testing of incident detection algorithms[R]. Wash-ington ,DC, USA: Federal Highway Administration,1976. 被引量:1
  • 4Abuelela M,Olariu S. Automatic incident detection inVANETs: a Bayesian approach [ C ] //IEEE VehicularTechnology Conference. Barcelona, Spain, 2009:1 -5. 被引量:1
  • 5Moynihan G P,Fonseca D J, Brumback T,et al. De-sign of a decision support system for road incident detec-tion and characterization [ C ] //Proceedings of the 2009ASCE International Workshop on Computing in Civil En-gineering. Austin, USA, 2009:613 —322. 被引量:1
  • 6Jeong Y-S, Castro-Neto M, Jeong M K,et al. A wave-let-based freeway incident detection algorithm withadapting threshold parameters [ J]. Transportation Re-search Part C,2009,19 (1): 1 - 19. 被引量:1
  • 7Ritchie S G, Cheu R L. Simulation of freeway incidentdetection using artificial neural networks [ J ] . Transpor-tation Research Part C, 1993, 1(3) :203 -217. 被引量:1
  • 8Jian L,Shuyan C, Wei W. A hybrid model of partialleast squares and neural network for traffic incident de-tection [J]. Expert Systems with Applications, 2012,39(5) : 4775-4784. 被引量:1
  • 9Subramaniam S. Literature review of incident detectionalgorithms to initiative diversion strategies[R]. Blacks-burg, VA,USA: Virginia Polytechnic Institute, 1991. 被引量:1
  • 10王欣,李文权,王炜.基于驾驶行为共性的回波速度解释及仿真[J].东南大学学报(自然科学版),2007,37(4):691-694. 被引量:2

二级参考文献30

  • 1樊建聪,张问银,梁永全.基于贝叶斯方法的决策树分类算法[J].计算机应用,2005,25(12):2882-2884. 被引量:20
  • 2MOHAMED A A, ANURAG P. Crash Data Analysis Collective vs. Individual Crash Level Approach [ J ] Journal of Safety Research, 2007, 38:581 -587. 被引量:1
  • 3陈扶崑,吴中,鲍业辉.高速公路交通事件检测算法及固定检测器布设方案[R/OL].南京:河海大学,2008.2008-10-29[2010-06-20].http://www.paper789.com/paper_usi75b/. 被引量:1
  • 4HU Shouren, SRINIVAS P, CHU C H. Identification of Vehicle Sensor Locations for Link-based Network Traffic Applications [ J]. Transportation Research Part B, 2009,43:873 -894. 被引量:1
  • 5DANCZYK A, LIU X H. A Mixed- integer Linear Program for Optimizing Sensor Locations along Freeway Corridors [ J/OL ]. Transportation Research PartB: Methodological, 2010, doi: 10. 1016/j. trb. 2010. 04. 002 [ 2010 - 08 - 23 ]. http: //www. sciencedirect. com/science? _ ob = ArticleURL&_ udi = B6V99 - 501CFXM - 1&_ user = 10&_ coverDate = 05% 2F07% 2F2010&_ rdoc = 1&_ fmt = high&_ orig = search&_ origin = search&_ sort = d&_ docanchor = &view = c&_ acct = O000050221&_ version = 1&_ urlVersion = 0&_ userid = 10&md5 = 35a810de85cbea374h0bbeb1bf7dc1c3&searchtype = a. 被引量:1
  • 6LI Xiaopeng, OUYANG Yanfeng. Reliable Sensor Deployment for Network Traffic Surveillance [ J/OL]. Transportation Research Part B : Methodological, 2010, doi: 10. 1016/j. trb. 2010. 04. 005 [2010- 08- 23]. http: //www. sciencedirect. com/science?_ ob = ArticleURL& udi = B6V99 - 501CFXM - 2&_ user = 10&_ coverDate = 05% 2F07% 2F2010& rdoc = 1&_ fmt = high&_ orig = search&_ origin = search&_ sort = d&_ docanchor -- &view = c&_ acct = C000050221&_ version = 1&_ urlVersion = 0&_ userid = 10&md5 = 67b992aa7cab39078bf22b3beba607e4&searchtype = a. 被引量:1
  • 7Zhang H M.A mathematical theory of traffic hysteresis[J].Transportation Research Part B,1999,33(1):1-23. 被引量:1
  • 8Zhang H M.Driver memory,traffic viscosity and a viscous vehicular traffic flow model[J].Transportation Research Part B,2003,37(1):27-41. 被引量:1
  • 9Zhang H M,Kim T.A car-following theory for multiphase vehicular traffic flow[J].Transportation Research Part B,2005,39(5):385399. 被引量:1
  • 10Wu Ning.A new approach for modeling of fundamental diagrams[J].Transportation Research Part A,2002,36(10):867-884. 被引量:1

共引文献28

同被引文献48

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部