摘要
同伦分析方法是获得非线性问题近似解的一种非常有效的方法。本文利用同伦分析方法,研究了(2+1)维Toda格子方程。研究表明,同伦分析方法可以用于求解微分差分方程,并能简化复杂的求解过程,因此拓宽了同伦分析方法的应用范围。
The homotopy analysis method (HAM) is effective for solving the approximate solution of nonlinear problem. This paper discusses a class solutions of (2 + 1 ) dimensional Toda Lattice equation by HAM, and the series analysis solution was obtained. It indicates that the method is effective and simple in calculations and is valid and feasible for the lattice equation. Therefore, this paper may be extended the application range of the HAM.
出处
《青岛农业大学学报(自然科学版)》
2012年第4期309-312,共4页
Journal of Qingdao Agricultural University(Natural Science)
关键词
(2+1)维Toda格子方程
同伦分析方法
微分差分方程
(2 + 1 ) Dimensional Toda Lattice Equation
Homotopy Analysis Method
Differential-difference Equation