期刊文献+

一种新型自适应粒子群优化粒子滤波算法及应用 被引量:4

Novel Particle Filtering Based on Adaptive Particle Swarm Optimization and Its Application
下载PDF
导出
摘要 基于粒子群优化的粒子滤波算法精度不高,运算复杂度大,难以在实际工程中应用.为此,文中提出一种新型邻域自适应调整的动态粒子群优化粒子滤波算法.该算法考虑了粒子的邻域信息,利用多样性因子、邻域扩展因子和邻域限制因子共同对粒子的邻域粒子数量进行自适应调整,控制粒子对邻域的影响,减轻局部最优现象,达到收敛速度和寻优能力的最佳平衡.利用UNGM模型、目标跟踪模型以及故障检测模型对算法的性能进行仿真测试,结果表明:该算法与PSO-PF相比提高了精度和运算速度,具有实际工程应用价值. Particle filter based on particle swarm optimization (PSO-PF) algorithm suffers from low precision and high computation complexity, therefore is difficult to be used in practical applications. This paper proposes a novel dynamic particle filter algorithm based on neighborhood adaptive particle swarm optimization (DPSO- PF). The method takes the neighborhood information of particles into consideration. Factors of diversity, neighborhood extension, and neighborhood limiting are jointly used to realize self-adaption of neighborhood particle numbers. Thus the influence of particles on the neighborhood is under control, and the local optimiza- tion phenomenon is alleviated. Optimal balance is achieved between convergence speed and search ability. By using the univariate nonstationary growth model (UNGM), target tracking model and failure detection model, a simulation test of the algorithm is performed. The results show that, compared to PSO-PF, the proposed algorithm improves precision and computation speed, showing its applicability to practical engineering.
出处 《应用科学学报》 CAS CSCD 北大核心 2013年第3期285-293,共9页 Journal of Applied Sciences
基金 国防重点预研项目基金(No.40405020201) 高等学校博士学科点专项科研基金(No.20113219110027) 国家自然科学基金(No.61104196) 南京理工大学紫金之星基金(No.AB41381)资助
关键词 粒子滤波 粒子群优化 目标跟踪 故障检测 particle filter, particle swarm optimization, target tracking, fault detection
  • 相关文献

参考文献15

  • 1栾海妍,江桦,刘小宝.利用粒子滤波与支持向量机的数字混合信号单通道盲分离[J].应用科学学报,2011,29(2):195-202. 被引量:11
  • 2GORDON N, SALMOND D J, SMITH A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation [C]//IEEE Proceedings F: Radar and Sig- nal Processing, 1993, 140(2): 107-113. 被引量:1
  • 3DOUCET A, GODSILL S. On sequential Monte Carlo sampling methods for Bayesian filtering [J]. Statistics and Compuring, 2000, 10(1): 197-208. 被引量:1
  • 4KONG A, LTU J. Sequential imputations and Bayesian missing data problems [J]. Journal Ameri- can Statistical Association, 1994, 89(2): 278-288. 被引量:1
  • 5UASAKI K, HATANAKA T. Evolution strategies based particle filter for fault detection [C]//Proceedings of the IEEE Symposium on Computational Intelligence in Image and Signal Processing, Hawaiian: IEEE, 2007: 58-65. 被引量:1
  • 6杨璐,李明,张鹏.一种新的改进粒子滤波算法[J].西安电子科技大学学报,2010,37(5):862-865. 被引量:16
  • 7程水英,张剑云.裂变自举粒子滤波[J].电子学报,2008,36(3):500-504. 被引量:50
  • 8方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 9Yu Yihua, ZHENG Xuanyuan. Particle filter with ant colony optimization for frequency offset estimation in OFDM systems with unknown noise distribution [J]. Signal Processing, 2011, 91(5): 1339-1342. 被引量:1
  • 10SANJEEV M, MASKELL S. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [C]//IEEE Transactions on Signal Processing, 2002, 50: 174-188. 被引量:1

二级参考文献70

  • 1陈根社,陈新海.遗传算法的研究与进展[J].信息与控制,1994,23(4):215-222. 被引量:109
  • 2张晓缋,戴冠中,徐乃平.一种新的优化搜索算法──遗传算法[J].控制理论与应用,1995,12(3):265-273. 被引量:96
  • 3V. N. Vapnik. The nature of statistical learning theory. NewYork: Springer-Verlag, 1995. 被引量:1
  • 4B. Scholkopt, S. Mika, C. J. C. Burges, et al. Input space versus feature space in kernel-based methods. IEEE Trans. on Neural Networks, 1999, 10(5): 1000-1017. 被引量:1
  • 5S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, et al. A fast iterative nearest point algorithm for support vector machine classifier design. IEEE Trans. on Neural Network, 2000, 11(1): 124-136. 被引量:1
  • 6L. Wang. Support vector machines: theory and application. Berlin: Springer, 2005. 被引量:1
  • 7T. lnoue, S. Abe. Fuzzy support vector machines for pattern classification. Proc. of International Joint Conference on Neural Networks, 2001: 1449-1454. 被引量:1
  • 8J. Kennedy, R. C. Eberhart. Particle swarm optimization. Proc. of 1EEE International Conference on Neural Networks, 1995: 1942-1948. 被引量:1
  • 9Y. Shi, R. C. Eberhart. A modified particle swarms optimizer. Proc. of lEEE Congress on Evolutionary Computation, 1998: 69-73. 被引量:1
  • 10I. C. Trelea. The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters, 2003, 85(6): 317-325. 被引量:1

共引文献270

同被引文献34

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部