期刊文献+

基于降维算法的分布式语义资源搜索 被引量:1

A Distributed Semantic Resources Search Based on Dimensionality Reduction Algorithm
原文传递
导出
摘要 提出了一种面向高维资源的分布式相似资源搜索机制.针对传统的分布式对等(P2P)网络无法解决高维资源的相似性搜索问题,通过基于主成分分析的降维算法将高维资源向量模型映射到低维空间,以低维空间中资源向量模型为索引,映射到P2P网络里的分布式散列表中,以一种完全基于P2P网络和路由机制的简单有效方式实现分布式相似性资源搜索,同时避免资源维数过高引发搜索的维数灾难.对降维处理后资源相似性信息保留情况进行了分析,并通过基于内容寻址网络的仿真验证了降维算法对于构建低维资源索引的有效性.对于具有一定聚类特征的高维资源,该方法可以在分布式的相似性搜索中获得较高的查准率. A distributed semantic resources search mechanism for high-dimensional resources is presen- ted. Faced with the problem that the similarity search with high-dimensional resources couldn't be effec- tively achieved in traditional peer-to-peer (P2P) network, a high-dimensional resource vector model is mapped to the low dimensional space based on dimensionality reduction algorithm based on principal com- ponent analysis and then projected to distributed hash table in P2P network which is a simple and effec- tive way to achieve distributed similarity search. Meanwhile, the curse of dimensionality owing to the high dimension of resources could be prevented in the search. The maintenance of the similarity information af- ter processing of dimensionality reduction is analyzed. Simulation based on content addressable network is shown the effectiveness of low-dimensional index built by dimensionality reduction algorithm. The mecha- nism will achieve a high precision ratio in distributed similarity search for the clustered high-dimensional resources.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2013年第2期74-78,共5页 Journal of Beijing University of Posts and Telecommunications
基金 杭州华星--北邮信通院2011研究生创新基金 国家科技重大专项项目(2012ZX03005008)
关键词 向量模型 坐标空间 降维 资源搜索 对等网络 vector model coordinate space dimension reduction resources search peer-to-peer net-work
  • 相关文献

参考文献8

  • 1Stoica I, Morris R, Karger D. Chord: a scalable peer-to-peer lookup service for internet applications [ C ]//ACM SIGCOMM Conference. San Diego: ACM, 2001: 149- 160. 被引量:1
  • 2Ratnasamy S, Francis P, Handley M. A scalable content- addressable network [C]//2001 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications. California: ACM, 2001 : 161-172. 被引量:1
  • 3李智玲.一种基于CHORD系统的多维相似查询处理方法[J].计算机系统应用,2006,15(4):37-40. 被引量:1
  • 4Liu Zhenpeng, Li Ailan. Searching model in P2P network based on semantics and Chord arithmetic [ J ]. Journal of Southeast University : Natural Science Edition, 2008, 38 : 335 -338. 被引量:1
  • 5孙名松,刘杰,李胜利.基于语义划分的P2P搜索技术研究[J].计算机技术与发展,2010,20(8):75-78. 被引量:3
  • 6Zhu Guiming, Jin Shiyao. SCQR-A P2P query routing al- gorithm based on semantic cluster[ C ]//Intelligent Ubiquitous Computing and Education. Chengdu: IEEE Press, 2009 : 92-96. 被引量:1
  • 7Berry M, Drmac Z, Jessup E. Matrices, vector spaces, and information retrieval [ J]. Society for Industrial and Applied Mathematics, SIAM Rev, 1999, 41 (2) : 335- 362. 被引量:1
  • 8Turk M, Pentland A P. Face recognition using eigenfaces [ C]//IEEE Conference on Computer Vision and Pattern Recognition. Maui, Hawaii: IEEE Press, 1991: 302- 306. 被引量:1

二级参考文献17

  • 1王志晓,张大陆,刘雷,姚传茂.支持语义的P2P搜索研究[J].计算机工程与应用,2007,43(3):8-11. 被引量:7
  • 2Stoica I,Morrisr,Uben-Nowell D,et al.Chord:a scalable peer-to-peer lookup protocol for Internet applications[J].IEEE//ACM Trans on Networking,2003,11(1):17-32. 被引量:1
  • 3Zhao B Y,Ling Huang,Strib Ling J,et al.Tapestry:a resilient global-scale overlay for service deployment[J].IEEE Journal on Selected Areas in Communications,2004,22(1):4l-53. 被引量:1
  • 4Ratnasamy S,Francis P,Handley M,et al.A Scalable Content-addressable Network[C] //Proc.of ACM SIGCOMM.[s.l.] :[s.n.] ,2001. 被引量:1
  • 5Rowstron A,Drusche P.Pastry:Scalable,Distributed Object Location and Routing for Large-scale Peer-to -Peer Systems[EB/OL].2001.http://research.Microsoft.com/~antr/pastry/,2001:188-192. 被引量:1
  • 6Berners-Lee T,Hendler J,Lassila O.The semantic web[EB/OL].2001-05.http:// www.sciam.com. 被引量:1
  • 7Salton G,Wong A.A vector space model for automatic indexing[J].Communications of ACM,1975,18(11):613-620. 被引量:1
  • 8Salton G,Yang C.On the specification of term values in automatic indexing[J].Journal of Documentation,1973,2(94):351-372. 被引量:1
  • 9Salton G,Lesk M.Computer evaluation of indexing and text processing[J].Journal of ACM,1968,15(1):8-36. 被引量:1
  • 10Gaede V,Gunther O.Multidimensional Access Methods.ACM Computing Surveys,1998,30 (2):170-231. 被引量:1

共引文献2

同被引文献12

  • 1Xanthopoulos P, Pardalos PM, Trafalis TB. Linear Discriminant Analysis. Robust Data Mining. Springer New York, 2013: 27-33. 被引量:1
  • 2Yah S, Xu D, Zhang B, et al. Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51. 被引量:1
  • 3Roweis S, Sau L. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(22): 2323- 2326. 被引量:1
  • 4Lin H, Hong Y, Shu J. Some relations between the eigenvalues of adjacency, laplacian and signless laplacian matrix of a graph. Graphs and Combinatorics, 2013: 1-9. 被引量:1
  • 5Campbell MC, Markham J, Flores H, et al. Principal component analysis of PiB distribution in Parkinson and Alzheimer diseases. Neurology, 2013,81(6): 520-527. 被引量:1
  • 6Asafu-Adjei JK, Sampson AIL Sweet RA, et al. Adjusting for matching and covariates in linear discriminant analysis. Biostatistics, 2013, 14(4): 779-791. 被引量:1
  • 7Zhang WQ, Yang HZ. A method of multiple soft-sensors based on SLPP. Journal of East China University of Science and Technology, 2012, 38(6): 724-728. 被引量:1
  • 8赵东红,王来生,张峰.遗传算法的粗糙集理论在文本降维上的应用[J].计算机工程与应用,2012,48(36):125-128. 被引量:5
  • 9李正欣,张凤鸣,张晓丰,杨仕美.多元时间序列特征降维方法研究[J].小型微型计算机系统,2013,34(2):338-344. 被引量:14
  • 10李惠君,张利辉,刘雪飞,唐勇.复杂仿真增量数据可视化中的降维研究[J].系统仿真学报,2013,25(10):2278-2284. 被引量:1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部