期刊文献+

基于关联特征词表的中文比较句识别 被引量:5

Chinese comparative sentences recognition based on associated feature vocabulary
下载PDF
导出
摘要 中文比较句研究多集中于语言学领域,然而利用机器学习的方法识别比较句的研究才刚刚起步。根据关联规则挖掘算法的基本原理提出一种基于关联特征词表的比较句识别方法,该方法将词和词性作为一个基本元素,定义特征词表中核心词和依存词之间的关联方式,利用支持向量机(SVM)分类器进行比较句的识别。实验结果表明,该方法能够有效地识别出中文比较句,在准确率、召回率和F值上均取得不错的效果。 Chinese comparative sentences are more focused in the field of linguistics. Using machine learning methods to identify comparative sentences, however, has only just started. According to the basic principle of the association rules mining algorithm, a method of comparative sentences based on the associated feature vocabulary was proposed. This method regarded word and part of speech as basic elements, defined the connecting way between the table definition core words and imerdependent relationship words, and used the Support Vector Machine (SVM) classifier for the identification of comparative sentences. The experimental results show that this method can effectively identify Chinese comparative sentences, and achieves good results in precision, recall and F-measure.
出处 《计算机应用》 CSCD 北大核心 2013年第6期1591-1594,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60873247) 国家社会科学基金资助项目(12BXW040) 公安部科技创新计划项目(2011YYCXSDST057) 山东省自然科学基金资助项目(ZR2012FM038 ZR2011FM030) 山东省科技发展计划项目(2012GGB01194)
关键词 比较句识别 文本分类 中文比较模式库 类序列规则 关联特征词表 comparative sentences identification text classification Chinese comparative pattern database classsequential rule associated feature vocabulary
  • 相关文献

参考文献11

二级参考文献79

共引文献83

同被引文献51

  • 1尚平.比较句系统研究综述[J].语言文字应用,2006(S2):77-80. 被引量:12
  • 2刘焱.“比”字句对比较项选择的语义认知基础[J].上海财经大学学报,2004,6(5):76-80. 被引量:6
  • 3陈珺,周小兵.比较句语法项目的选取和排序[J].语言教学与研究,2005(2):22-33. 被引量:61
  • 4车竞.现代汉语比较句论略[J].湖北师范学院学报(哲学社会科学版),2005,25(3):60-63. 被引量:23
  • 5李建军,何中市.比较句与比较关系识别研究及其应用[D].重庆:重庆大学,2011. 被引量:5
  • 6Nitin Jindal,Bing Liu. Miningcomparative sentences and relations [ C ]//Proceedings of the 21^st National Conference on Artificial Intelligence. AAAI, 2006: 1331-1336. 被引量:1
  • 7Hu Mingqing,Liu Bing. Mining and summarizing customer reviews [ C]//Proceedings of thel0th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2004: 168-177. 被引量:1
  • 8Ana-Maria Popescu, Orena Etzioni. Extracting Product Features and Opinions from Reviews [M]. Natural Language Processing and Text Mining. Springer London, 2007 : 9-28. 被引量:1
  • 9Shi Bin, Chang Kuiyu. MiningChinese reviews [ C ]// Data Mining Workshops, the 6^th IEEE International Conference,IEEE, 2006 : 585-589. 被引量:1
  • 10Rodrigo Moraes, Joao Francisco Valiati, Wilson P. Gaviao Neto. Document-level sentiment classification: an empirical comparison between SVM and ANN [ J ]. Expert Systems with Applications, 2013, 40 ( 2 ) : 621-633. 被引量:1

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部