期刊文献+

ReliefF-SVM RFE组合式特征选择人脸识别 被引量:6

Combined feature selection of ReliefF-SVM RFE used in face recognition
下载PDF
导出
摘要 针对人脸识别中因特征个数较多对识别的实时性和准确性影响较大的问题,提出了ReliefF-SVM RFE组合式特征选择的人脸识别方法。利用离散余弦变换提取特征和ReliefF对人脸图像特征集做特征初选,降低特征维数空间,再用改进的SVM RFE(Support Vector Machine Recursive Feature Elimination)选择最优特征,解决了利用SVM RFE特征选择时因特征数多而算法需多次训练耗时长的问题。对训练得到的特征排序表采用交叉留一验证方法选取最优子集,再由SVM分类识别。在UMIST人脸库上实验证明,可以在特征数为52时,达到98.84%的识别率,识别时间仅需0.037s。 To solve the problem that too much features have great effects on the instantaneity and accuracy of face recognition, a method named combined facial feature selection based on ReliefF-SVM RFE is proposed. The proposed method uses DCT extract facial feature and ReliefF select feature to reduce the feature dimension space initially, then uses improved SVM RFE to select optimal feature. This method solves the problem that the SVM REF feature selection consums long time because of train- ing much features repeatedly. Finally, it uses leave-one-out method to select optimal feature subset from feature ranking table, and Classification by SVM. Experiments are performed on UMIST facial database, accuracy of 98.84% is achieved when facial features are 52, recognition time only needs 0.037 s.
出处 《计算机工程与应用》 CSCD 2013年第11期169-171,212,共4页 Computer Engineering and Applications
关键词 人脸识别 支持向量机回归特征消除(SVM RFE) RELIEFF 离散余弦变换 特征选择 face recognition Support Vector Machine Recursive Feature Elimination (SVM RFE) ReliefF discrete cosine transform feature selection
  • 相关文献

参考文献10

  • 1Kohavi R, John G.Wrapper for feature subset selection[J]. Artificial Intelligence, 1997,79 (3) : 273-324. 被引量:1
  • 2Kira K, Rendell L.The feature selection problem: traditional methods and a new algorithm[C]//Proceedings of the 9th Conference on Artificial Intelligence.New Orleans: AAAIPress, 1992: 129-134. 被引量:1
  • 3Kononerko I.Estimating attributes: analysis and extension of relief[C]//Proceedings of European Conference on Machine Learning, 1994 : 171-182. 被引量:1
  • 4李伟红,龚卫国,陈伟民,梁毅雄,尹克重.基于SVM RFE的人脸特征选择方法[J].光电工程,2006,33(5):113-117. 被引量:4
  • 5Tang Yuchun, Zhang Yanqing, Huang Zhen.Development of Two-stage SVM RFE gene selection strategy for microar- ray expression data analysis[J].Computational Biology and Bioinformatics, 2007,4 ( 3 ) : 365-381. 被引量:1
  • 6Hafed Z M, Levine M D.Face recognition using the dis- crete cosine transform[J].International Journal of Computer Vision, 2001,43(3) .. 167-188. 被引量:1
  • 7王克奇,朱金魁,白雪冰.基于小波分析和DCT的人脸特征提取[J].自动化技术与应用,2009,28(4):65-68. 被引量:6
  • 8Guyon I,Weston J,Barnhill S,et al.Gene selection for can- cer classification using support vector machines[J].Machine Learning, 2002,46 ( 1/3 ) : 389-422. 被引量:1
  • 9Zhou Xin,Mao Kezhi.The ties problem resulting from count- ing based error estimators and its impact on gene selection algorithms[J].Bioinformations, 2006,22 : 2507-2515. 被引量:1
  • 10Word S, Sjostrtim M, Eriksson L.PLS-regression: a basic tool of chemometrics[J].Chemometrics and Intelligent Lab- oratory Systems,2001,58(2) : 109-130. 被引量:1

二级参考文献19

  • 1陈彬,洪家荣,王亚东.最优特征子集选择问题[J].计算机学报,1997,20(2):133-138. 被引量:96
  • 2陈鹏.人脸特征提取方法的研究.中国水运,2006,12(4):106-108. 被引量:1
  • 3HAFED Z M,LEVINE M D.Face Recognition Using the Discrete Cosine Transform[J].International Journal of Computer Vision,2001,43(3):167-188. 被引量:1
  • 4VAPNIK V N.The Nature of Statistical Learning Theory[M].Springer,1995. 被引量:1
  • 5VAPNIK V N.Statistical Learning Theory[M].Wiely,New York,1998. 被引量:1
  • 6Joachims T.Making Large-scale SVM Learning Practiceal[M].In:Advances in Kernel Methods-support Vector Learning,MIT Press,Cambridge,MA,1998:169-184. 被引量:1
  • 7L J CAO, K S CHUA, W K CHONG, et al. A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine[J]. Neurocomputing, 2003, 55: 321-336. 被引量:1
  • 8GRAHAM D.B, ALLINSON N. M. Characterizing Virtual Eigensignatures for General Purpose Facial Recognition[A].WECHSLER H, PHILLIPS P. J, BRUCE V, et al. Facial Recognition: From Theory to Application (NATO ASI Series F,Computer and Systems Sciences: Vol.163)[M]. Berlin Heidelberg, New York: Springer-Verlag, 1998. 446-456. 被引量:1
  • 9V. VAPNIK. Statistical Learning Theory[M]. New York: John Wiley and Sons, Inc. 1998. 被引量:1
  • 10C J C BURGES. A tutorial on support vector machines for pattem recognition[J]. Data Mining Knowledge Discovery, 1998,2(2): 121-167. 被引量:1

共引文献8

同被引文献50

  • 1张丽新,王家廞,赵雁南,杨泽红.基于Relief的组合式特征选择[J].复旦学报(自然科学版),2004,43(5):893-898. 被引量:44
  • 2刘晓旻,章毓晋.基于Gabor直方图特征和MVBoost的人脸表情识别[J].计算机研究与发展,2007,44(7):1089-1096. 被引量:26
  • 3Kong S G,Heo J,Abidi B R,et al.Recent advances in visual and infrared face recognition-a review.Computer Vision and Image Understanding,2011; 97(1):103-135. 被引量:1
  • 4Behaine C,Scharcanski J.Enhancing the performance of active shape models in face recognition applications.IEEE Transactions on Instrumentation and Measurement,2012; 61 (8):2330-2333. 被引量:1
  • 5Pedrycz W,Ahmad S S.Evolutionary feature selection via structure retention.Expert Systems with Applications,2012; 39 (5):1801-1807. 被引量:1
  • 6Vignolo L D,Milone D H,Scharcanski J,et al.An evolutionary wrapper for feature selection in face recognition applications.IEEE international conference on systems,2012; 34(2):1286-1290. 被引量:1
  • 7Kim H,Liou M S.New fitness sharing approach for muhi-objective genetic algorithms.Journal of Global Optimization,2012; 35(3):1-17. 被引量:1
  • 8Li W H,Liu L J,Gong W G. Multi-object uniform designas a SVM model selection tool for face recognition [J]. Ex-pert Systems with Application,2011,38(6):6689-6695. 被引量:1
  • 9Ying Z L,Fang X Y. Combining LBP and Adaboost for Fa-cial Expression Recognition[C]//. In: Proc. IEEE Int. Conf.Signal Processing, Leipzig,Germany:IEEE,2008,1461-1464. 被引量:1
  • 10Ergnn G,Niyazi K,Ahmct S,Osman N U.Evaluation offace recognition techniques using PCA,wavelets and SVM[J].Expert Systems with Applications,2010,37(9):6404-6406. 被引量:1

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部