期刊文献+

HMX基混合炸药大隔板厚度的数值计算 被引量:1

Numerical Calculation on Large Scale Gap Thickness of HMX-based Composite Explosive
下载PDF
导出
摘要 选取26组HMX基混合炸药,通过考察HMX含量、炸药的密度及空隙率与隔板厚度间的关系,对数据进行统计分析,建立了以HMX含量、炸药密度及空隙率为自变量的两个经验数学模型。计算结果表明,HMX基混合炸药大隔板厚度与HMX含量、炸药空隙率的自然对数成显著线性关系;两个经验数学模型拟合优度良好;4组HMX基混合炸药大隔板厚度计算值与试验值的相对误差小于6%。 The 26 kinds of HMX-based composite explosives were selected. Two empirical mathematic models were established through considering the relation of HMX content, density and void ratio of explosive with thickness gap test data by linear regression fit methods. The results show that the large scale gap thickness is significantly linear related to HMX content and natural logarithm of explosive void ratio; the goodness of fit on two empirical math- ematic models is well; the relative error of the calculated results and experimental ones of gap thinkness for four HMX-based composite explosives is within 6 %.
出处 《火炸药学报》 EI CAS CSCD 北大核心 2013年第2期33-37,共5页 Chinese Journal of Explosives & Propellants
基金 火炸药国防专项资助
关键词 爆炸力学 冲击波感度 大隔板试验 混合炸药 explosion mechanics shock sensitivity large scale gap test composite explosive
  • 相关文献

参考文献13

二级参考文献35

共引文献62

同被引文献18

  • 1刘欢,姜峰,于国强,李俊.遗传-神经网络方法在炸药撞击感度预测中的应用研究[J].火工品,2010(6):42-45. 被引量:4
  • 2赵俊,何碧,程新路,杨向东.多硝基炸药撞击感度与分子特征量关联度的BP神经网络方法研究[J].四川大学学报(自然科学版),2006,43(3):627-631. 被引量:10
  • 3史峰,王小川.MATLAB神经网络30个案例分析[M].北京:北京航空航天大学出版社,2011. 被引量:22
  • 4Nefati H, Diawara B, Legendre J J. Predicting the impact sensi- tivity of explosive molecules using neuromimetic networks [ J ]. SAR and QSAR in Environmental Research, 1993, 1 (2/3):131 -136. 被引量:1
  • 5Nefati H, Cense J M, Legendre J J. Prediction of the impact sen- sitivity by neural networks [ J]. Journal of Chemical Information and Computer Sciences, 1996, 36(4) :804 -810. 被引量:1
  • 6SooGyeong C, Kyoung T, EunMee G, et al. Optimization of neu- ral networks architecture for impact sensitivity of energetic mole- cules [ J ]. Bulletin of the Korean Chemical Society, 2005, 26(3) : 399 -408. 被引量:1
  • 7Mohammad H K, Mohammad J. Investigation of the various struc- ture parameters for predicting impact sensitivity of energetic mole- cules via artificial neural network [J]. Propellants, Explosives, Pyrotechnics, 2006, 31 (3) :216 - 224. 被引量:1
  • 8Wang R, Jiang J C, Pan Y, et al. Prediction of impact sensitivity of nitro energetic compounds by neural network based on electroto- pological-state indices[J]. Journal of Hazardous Materials, 2009, 166(1) : 155 -186. 被引量:1
  • 9WANG Rui, JIANG Jun-cheng, PAN Yong. Prediction of impact sensitivity of nonheterocyclic nitroenergetic compounds using ge- netic algorithm and artificial neural network[J]. Journal of Ener- getic Materials, 2012, 30(2) :135 - 155. 被引量:1
  • 10袁俊明,刘玉存.基于灰色神经网络模型的混合炸药特性落高预测[J].兵工学报,2012,33(增刊1):195-199. 被引量:1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部