期刊文献+

基于粒子群神经网络的黑索今基混合炸药大隔板试验冲击波感度预测 被引量:3

Prediction of Shock Sensitivity of RDX-based Composite Explosive by Particle Swarm Neural Network in Large-scale Gap Test
下载PDF
导出
摘要 应用粒子群神经网络模型对黑索今(RDX)基混合炸药冲击波感度的大隔板厚度值进行预测以减少试验量,节约试验成本。选取具有不同密度、空隙率、装药方式、RDX含量等特征的41组RDX基混合炸药,考察炸药实际密度、空隙率、RDX和附加物含量影响因素,通过分析它们与大隔板厚度值的非线性关系,建立大隔板厚度值与上述4个变量之间的粒子群算法优化神经网络模型,采用100进化次数,40种群规模进行计算。计算与试验结果表明:4个变量与大隔板厚度值之间的映射模型良好;模型预测值与试验值吻合良好,相对误差在10%以内。该粒子群神经网络模型预测值对RDX基混合炸药大隔板试验具有一定参考价值。 The large-scale gap thickness value of RDX-based composite explosive shock sensitivity is predicted by particle swarm neural network for reducing the number of tests and saving the test cost. 4l groups of RDX-based composite explosives with different densities, void ratios, charge structures and RDX contents are selected for test. The practical density of explosive, void ratio, RDX and additives content are taken into account as main influence factors. The nonlinear relationship among three influence factors and large scale gap thickness value is analyzed. The neural network model optimized by particle swarm algorithm is established for the above four variables and gap thickness value. The calculation re- sults show that there is a good mapping model between the four variables and large scale gap thickness value; the predicted values are in good agreement with the experimental results, and the relative error is within 10%. The predicted value of the particle sarwm neural network can provide reference for the large-scale gap test of RDX-based composite explosive.
出处 《兵工学报》 EI CAS CSCD 北大核心 2014年第2期188-193,共6页 Acta Armamentarii
基金 火炸药国防基础创新项目(20090371)
关键词 兵器科学与技术 混合炸药 冲击波感度 大隔板试验 神经网络 ordnance science and technology composite explosive shock sensitivity large-scale gap test neural network
  • 相关文献

参考文献20

  • 1李玉斌,黄辉,李金山,李海波.一种含LLM-105的HMX基低感高能PBX炸药[J].火炸药学报,2008,31(5):1-4. 被引量:25
  • 2何中其,陈网桦,彭金华,刘荣海,王慧君,姜炜.基于水中小隔板法测试炸药冲击波感度的初步尝试[J].兵工学报,2012,33(8):1004-1008. 被引量:3
  • 3曾代朋,谭多望,李尚斌,李涛.含铝炸药冲击波感度的实验和数值计算研究[J].含能材料,2010,18(2):148-151. 被引量:8
  • 4Nefati H, Diawara B, Legendre J J. Predicting the impact sensi- tivity of explosive molecules using neuromimetic networks [ J ]. SAR and QSAR in Environmental Research, 1993, 1 (2/3):131 -136. 被引量:1
  • 5Nefati H, Cense J M, Legendre J J. Prediction of the impact sen- sitivity by neural networks [ J]. Journal of Chemical Information and Computer Sciences, 1996, 36(4) :804 -810. 被引量:1
  • 6SooGyeong C, Kyoung T, EunMee G, et al. Optimization of neu- ral networks architecture for impact sensitivity of energetic mole- cules [ J ]. Bulletin of the Korean Chemical Society, 2005, 26(3) : 399 -408. 被引量:1
  • 7Mohammad H K, Mohammad J. Investigation of the various struc- ture parameters for predicting impact sensitivity of energetic mole- cules via artificial neural network [J]. Propellants, Explosives, Pyrotechnics, 2006, 31 (3) :216 - 224. 被引量:1
  • 8Wang R, Jiang J C, Pan Y, et al. Prediction of impact sensitivity of nitro energetic compounds by neural network based on electroto- pological-state indices[J]. Journal of Hazardous Materials, 2009, 166(1) : 155 -186. 被引量:1
  • 9刘欢,姜峰,于国强,李俊.遗传-神经网络方法在炸药撞击感度预测中的应用研究[J].火工品,2010(6):42-45. 被引量:4
  • 10WANG Rui, JIANG Jun-cheng, PAN Yong. Prediction of impact sensitivity of nonheterocyclic nitroenergetic compounds using ge- netic algorithm and artificial neural network[J]. Journal of Ener- getic Materials, 2012, 30(2) :135 - 155. 被引量:1

二级参考文献49

共引文献73

同被引文献23

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部