摘要
对任意正整数n,著名的Smarandache函数S(n)定义为S(n)=min{m:m∈N,n|m!},而伪Smarandache函数Z1(n)定义为Z1(n)=min{m:m∈N,n|12+22+…+m2}.研究方程Z1(n)+1=S(n)的可解性,并利用初等方法得到了该方程的所有正整数解,同时也给出了所有解的具体表示形式.
For any positive integer n, the famous Smarandache function S(n) defined as the smallest positiveinteger m such that n | m !. That is, S(n)=min{m:m∈N,n|m!). The pseudo Smarandache function Z1 (n) defined as the smallest integer m such that n l m(m+1) (2m+ 1)/6 or Z1 (n) =min{m:m∈N,n|1^2+2^2+…+m^2} ,where N denotes the set of all positive integers. The solvability of the equation Z1 (n)+1=S(n) is studied. Using the elementary method,its all positive solutions is given. At the same time, their exact representation of all solutions are given.
出处
《纺织高校基础科学学报》
CAS
2013年第1期15-17,共3页
Basic Sciences Journal of Textile Universities
基金
国家自然科学基金资助项目(11071194)
陕西省教育厅科学计划项目(12JK871)