摘要
基于非线性理论,分析了气体动压轴承-转子非线性动力系统的不平衡响应。建立了与时间相关的非线性气体动压轴承的压力分布模型和气体动压轴承-刚性Jeffcott转子系统的动力学模型。运用微分变换法求解了动压气体润滑的Reynolds方程,得到了非线性气膜压力分布。运用分岔图、轨迹图、Poincaré映射图及频谱图研究了三轴向槽有限宽气体轴承支承的非线性转子系统的不平衡响应。数值结果表明,系统的非线性行为包括周期运动、周期二运动、周期四运动、周期八运动及混沌运动等。
Based on the nonlinear theory,the unbalanced response behavior of the rotor dynamic system supported by gas journal bearings is investigated.A time-dependent mathematical model is established to describe the pressure distribution of gas journal bearing with nonlinearity.The rigid Jeffcott rotor with self-acting gas journal bearing supports is modeled.The differential transformation method is employed to solve the time-dependent Reynolds equation of gas bearings.The unbalanced responses of the rotor system supported by finite width gas journal bearings with three axial grooves are analyzed by bifurcation diagram,orbit diagram,Poincaré map diagram and frequency diagram.The numerical results reveal periodic,period-doubling,period-4,period-8 and chaotic motion of nonlinear behaviors of the system.
出处
《振动.测试与诊断》
EI
CSCD
北大核心
2013年第2期219-223,337,共5页
Journal of Vibration,Measurement & Diagnosis
基金
国家自然科学基金资助项目(51075327)
国家重点基础研究发展计划("九七三"计划)资助项目(2013CB035705)
机械传动国家重点实验室开放课题资助项目(SKLMT-KFKT-201011)
陕西省教育厅科学研究计划资助项目(09JK680)
关键词
非线性
动压气体轴承
转子
微分变换法
nonlinear,self-acting gas bearing,rotor,differential transformation method