期刊文献+

图像分割复杂性测度研究 被引量:1

Study on Image Segmentation Complexity Measure
下载PDF
导出
摘要 基于内容的图像处理与分析技术,其基本前提是确定图像中包含的内容,即具有语义的内容对象。图像分割技术是实现图像内容对象检测的基本方法。对图像分割中的必要性问题进行了相关研究,针对大部分图像分割算法因所分割的图像不具有语义信息而导致图像分割出现无意义情况的现状,提出了一种图像分割复杂性的定义。基于该定义,给出了其实现方法。通过系统的实验结果表明,所提出的新的图像分割复杂性指标可以很好地适应图像目标区域大小,是衡量图像分割必要性的一种合理有效的方法,且能够成为一种重要的图像分割判断指标。 The basic foundation of processing and analysis technology of image is confirming the content of image,namely with semantic content object.The existing image segmentation algorithms make segmentation areas only accor-ding to the color,and texture.Therefore it does not have any semantic information.Aiming at this issue,the necessity of image segmentation problem was analyzed,and the definition of a new image segmentation necessity evaluation index was proposed,and also,the judgment procedure and realization method were provided based on this index.The experimental results show that compared with the existing image segmentation method,the proposed image segmentation necessity index has very good adaptability to the target area size,and it can be an important measure and effective method to the necessity of the image segmentation.
出处 《计算机科学》 CSCD 北大核心 2013年第4期310-313,共4页 Computer Science
基金 国家自然科学基金项目(61202285) 河南省科技厅科学技术重点项目(12A510001)资助
关键词 图像 复杂性 测度 分割 Image Division Complexity Measure
  • 相关文献

参考文献12

  • 1Cios K J ,Pedrycz W, Swiniarsk R M. Data Mining Methods for Knowledge Discovery [J]. IEEE Transactions on Neural Net- works, 1998,9 (6) : 1533-1534. 被引量:1
  • 2Feyyad U M. Data mining and knowledge discovery: making sense out of data [J]. IEEE Expert, 1996,11(5):20-25. 被引量:1
  • 3Zhang K D, Lu H Q, Duan M Y, et al. Automatic Salient Re- gions of Interest Extraction Based on Edge and Region Integra- tion [C] // Proceedings of 2006.IEEE International Sympoium on Industrial Electronics. Montreal, Quebec, Canada: IEEE In- dustrial Electronics Society, 2006,1 : 620 -623. 被引量:1
  • 4Luo Y, Zhang Y J, Gao Y Y, et al. Extracting Meaningful Region for Content-based Retrieval of Image and Video [C]//Procee- dings of SPIE Visual Communications and Image Processing. San Jose, California, USA: SPIE, 2001,4310: 455-464. 被引量:1
  • 5Mallat S, Hwang W L. Singularity detection and processing with wavelets[J]. IEEE Transactions on Information Theory, 1992, 38(2) :617-643. 被引量:1
  • 6Fwu J K,Djurie P M. EM algorithm for image segmentation ini- tialized by a tree structure scheme [J]. IEEE Transactions on Image Processing, 1997,6 (2) : 349-352. 被引量:1
  • 7Chen C W, Luo J,Parker K J. Image segmentation via adaptive K-mean clustering and knowledge-based morphological opera- tions with biomedical applications [J]. IEEE Transactions on Image Processing, 1998,7(12) :1673-1683. 被引量:1
  • 8Yang X D, Gupta V. An improved threshold selection method for image segmentation [C]//Proceedings of 1993 IEEE Cana- dian Conference on Electrical and Computer Engineering. Water- loo, Canada: IEEE Computer Society, 1993,1:531-534. 被引量:1
  • 9Shi Jian-bo, Malik J. Normalized cuts and image segmentation [J].IEEE Transactions on Pattern Analysis and Machine Intel- ligence,2000,22(8) :888 - 905. 被引量:1
  • 10Comaniciu D, Meer P. Mean shift:a robust approach toward fea- ture space analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(5) : 603-619. 被引量:1

同被引文献16

  • 1Khan M W. A survey image segmentation tech- niques[J]. Int J Future Comput Commun, 2014, 3(2) : 89. 被引量:1
  • 2Meyer Y. Oscillating patterns in image processing and nonlinear evolution equations. The fifteenth Dean Jacqueline B. Lewis memorial leetures[C]. Boston MA, USA.. American Mathe-matical Socie- ty, 2001. 被引量:1
  • 3Yuan J Y, Wang D L, Li R X. Remote sensing im- age segmentation by combining spectral and texture features [J]. IEEE Trans Geosci Remote , 2014,52 (1) : 16. 被引量:1
  • 4Tran K A, Vo N Q, Nguyen T T, et al. Gaussian Mixture Model Based on Hidden Markov Random Field for Color Image Segmentation[C]// Ubiquitous Infor- mation Technologies and Applications. Berlin, Germa- ny: Springer Berlin Heidelberg, 2014. 被引量:1
  • 5Larsen B, Aone C. Fast and effective text mining using linear-time document clustering[C]// Proceedings of the fifth San Diego, California ACM SIGKDD interna- tional conference on Knowledge discovery and data mining. San Diego, California. ACM, 1999. 被引量:1
  • 6Andersson T, Lathen G, Lenz R, et al. Modified gradient search for level set based image segmenta- tion[J]. IEEE Trans Image Proc, 2013, 22 (2) : 621. 被引量:1
  • 7Brown E S, Chan T F, Bresson X. Completely con- vex formulation of the chan-vese image segmenta- tion model [J] Int J Comput Vision, 2012, 98 (9) : 103. 被引量:1
  • 8Yin J J, Yang J. A modified level set approach for segmentation of multi-band polarimetric SAR ima- ges[J]. IEEE Trans Geosei Remote Sens, 2014,52 (11) : 7222. 被引量:1
  • 9Yang X, Gao X B, Tao D C , etal. Improving level set method for fast auroral oval segmentation[J]. IEEE Trans Image Proc , 2014,23(7) : 2854. 被引量:1
  • 10Wang B, Gao X B, Tao D Ch, etal. A nonlinear a- daptive level set for image segmentation[J]. IEEE Trans Cybern, 2014, 44(3): 418. 被引量:1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部