期刊文献+

基于拥挤距离的多目标粒子群优化算法在漳河水库优化调度中的应用 被引量:10

Application of Multi-objective Particle Swarm Optimization Based on Crowding Distance to Optimal Operation of Zhanghe Reservoir
下载PDF
导出
摘要 针对传统多目标优化算法的不足,提出了基于拥挤距离的多目标粒子群优化算法(MOPSO-CD),该算法用拥挤距离来维持精英策略和选取全局极值,同时引入动态非均匀变异算子,用以维持粒子多样性、减缓算法收敛速度、避免早熟收敛。以漳河水库为例,建立了以灌溉缺水量最小和发电量最大为目标函数的两目标优化调度模型,将MOPSO-CD应用于模型的求解中,得到了足够多且较均匀的非劣(Pareto)解前端。 In view of the disadvantages of the traditional multi-objective optimization algorithm, multi-objective particle swarm optimization based on crowding distance (MOPSO-CD) was proposed. The crowding distance was used to keep the elite strategy and select the global extremum in this algorithm. Meanwhile, the dynamic non-uniform mutation operator was introduced to maintain the diversity of particles, slow the speed of convergence and avoid premature convergence. The two-objective optimal operation model of Zhanghe reservoir was established by taking both minimum irrigation water shortage and maximum electric energy production as objective functions. The MOPSO-CD algorithm was applied to solve this model. Example calculations show that the algorithm could get enough non-inferior solutions and much more uniform fronts.
出处 《水电能源科学》 北大核心 2013年第4期42-45,共4页 Water Resources and Power
基金 国家自然科学基金资助项目(50909073 51179130)
关键词 多目标优化 拥挤距离 基于拥挤距离的多目标粒子群优化算法 动态非均匀变异 漳河水库 multi-objective optimization crowding distance multi-objective particle swarm optimization based on crowding distance dynamic non-uniform mutation Zhanghe reservoir
  • 相关文献

参考文献8

  • 1贠汝安,董增川,王好芳.基于NSGA2的水库多目标优化[J].山东大学学报(工学版),2010,40(6):124-128. 被引量:21
  • 2Mostaghim S, Teich J. Strategies for Finding GoodLocal Guides in Multi-objective Particle Swarm Op-timization ( MOPSO) [A], Proceedings of the 2003IEEE Swarm Intelligence Symposium[C]. Indianap-olis, USA, 2003:26-33. 被引量:1
  • 3Li Xiaodong. A Non-dominated Sorting ParticleSwarm Optimizer for Multi-objective Optimization[J]. Genetic and Evolutionary Computation,2003 :37-48. 被引量:1
  • 4Carlo R Raquel, Prospero C Naval Jr. An EffectiveUse of Crowding Distance in Multiobjective ParticleSwarm Optimization [A]. Proceedings of the 2005Conference on Genetic and Evolutionary Computa-tion[C]. Washington DC, USA,2005 :257-264. 被引量:1
  • 5杨俊杰,周建中,方仍存,钟建伟.MOPSO算法及其在水库优化调度中的应用[J].计算机工程,2007,33(18):249-250. 被引量:13
  • 6M Janga Reddy, D Nagesh Kumar. Performance E-valuation of Elitist-mutated Multi-objective ParticleSwarm Optimization for Integrated Water ResourcesManagement [ J ]. Journal of Hydroinformatics,2009,11(1):79-88. 被引量:1
  • 7Michalewicz Z. Genetic Algorithms + Data Struc-tures =Evolution Programs (3rd. rev. and extendeded. )[M], New York:Springer-Verlag, 1996. 被引量:1
  • 8田娟,董贵明.基于多元线性回归的地下水开采可靠度模型[J].水电能源科学,2011,29(1):43-44. 被引量:5

二级参考文献31

共引文献35

同被引文献99

引证文献10

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部