期刊文献+

光伏建筑屋顶的通风腔设计分析 被引量:5

Design and Analysis on Ventilated Cavity for Building Rooftop Integrated Photovoltaic
原文传递
导出
摘要 本文通过对光伏建筑屋顶中通风腔内空气传热进行理论分析、数值计算和仿真模拟,并结合上海太阳能工程技术研究中心1#楼屋面光伏阵列进行实际测量,验证了理论分析和数值计算的准确性。研究结果表明,光伏建筑屋顶通风腔的深度选择受光伏阵列长度、安装高度和光伏阵列倾斜角度的综合影响,设计合理的通风腔不仅可以降低光伏组件的温度,而且能提高屋顶的隔热性能。通风腔优化设计分析使得带有通风腔的光伏建筑更具经济性,可有效促进光伏建筑一体化的推广应用。 In this paper, the air heat transfer in ventilated cavity of photovoltaic roof was studied by theoretical analysis, numerical calculation and simulation methods. And then, the measurement was carried out on the building 1 # roof of Shanghai Solar Energy Research Center, the accuracy of theoretical analysis and numerical calculation was validated. The results indicated that the optimum space of ventilated cavity was influenced by the length, mounting height and slope of the photovohaic array. The ventilated cavity with reasonable design could not only reduce the temperature of photovoltaic module, but also could improve the thermal insulation performance of the roof. The optimization design of ventilated cavity would make the building integrated photovoltaic more economical, and therefore accelerate its application.
出处 《建筑科学》 北大核心 2013年第4期65-72,共8页 Building Science
基金 上海科技启明星基金项目(12QB1404400)
关键词 光伏建筑一体化 通风腔间距 组件温度 仿真模拟 building integrated photovoltaic, ventilated cavity, module temperature, numerical simulation
  • 相关文献

参考文献11

  • 1Brinkworth BJ ,Cross BM, Marshall RH, et al. Thermal regulation of photovoltaic cladding [ J ]. Solar Energy, 1997,61 ( 3 ) : 169 - 178. 被引量:1
  • 2Brinkworth B J, Sandberg M. A validated procedure for determining the buoyancy-induced flow in ducts [ J ]. Building Services Engineering Research and Technology,2005,26 (1) :35 -48. 被引量:1
  • 3Brinkworth BJ,Sandberg M. Design procedure for cooling ducts to minimise efficiency loss due to temperature rise in PV arrays[ J]. Solar Energy,2006,80( 1 ) :89 - 103. 被引量:1
  • 4Liu CH, Sparrow EM. Convective-radiative interaction in a parallel plate channel-application to air-operated solar collectors [J]. International Journal of Heat and Mass Transfer, 1980,23 (8) :1137 - 1146. 被引量:1
  • 5Brinkworth BJ. Coupling of convective and radiative heat transfer in PV cooling ducts [ J ]. Journal of Solar Energy Engineering- Transactions of the ASME,2002,124 (3) :250 - 255. 被引量:1
  • 6Sparrow EM,Cur N. Turbulent heat transfer in a symmetrically or asymmetrically heated flat rectangular duct with flow separation at inlet[ Jl. Journal of Heat Transfer-Transactions of the ASME, 1982,104(1) :82 -89. 被引量:1
  • 7Brinkworth BJ. Estimation of flow and heat transfer for the design of PV cooling ducts [ J ]. Solar Energy,2000,69 ( 5 ) :413 - 420. 被引量:1
  • 8Hollands KGT,Shewen EC. Optimization of flow passage geometry for air-heating plate-type solar collectors [ J ]. Journal of Solar Energy Engineering-Transactions of the ASME, 1981,103 (4) :323 - 330. 被引量:1
  • 9Hegazy AA. Comparative study of the performances of four photovoltaic/thermal solar air collectors [ J ]. Energy Conversion and Management,2000,41 (8) :861 - 881. 被引量:1
  • 10Krauter S,Araujo RG, Schroer S, et al. Combined photovoltaic and solar thermal systems for facade integration and building indulation [ J ]. Solar Energy, 1999,67 ( 4 - 6 ) :239 - 248. 被引量:1

同被引文献45

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部