期刊文献+

基于粒子群算法的汽车悬架PID控制仿真 被引量:16

Simulation of PID Control for Vehicle Suspension Based on PSO Algorithm
下载PDF
导出
摘要 研究汽车悬架稳定性控制优化问题,由于PID控制器在汽车主动悬架中参数的选择决定汽车行驶的稳定性能。针对传统参数整定的方法存在盲目性,设计了一种用粒子群算法优化整定PID参数的方法。利用粒子群算法的并行全局搜索策略,以主动悬架性能指标为目标函数对PID参数进行优化设计。应用改进方法对汽车悬架主动控制系统进行仿真。仿真结果表明,用粒子群算法优化的PID控制器的汽车主动悬架相对于PID控制主动悬架及被动悬架而言,改善了车身垂向加速度和悬架动行程。同时解决了PID控制器参数整定的问题。 ABSTRACT: Due to the problem of the PID controller when defining the three parameters, a method using the PSO algorithm was designed to optimize it. This method utilizes the global searching strategy of the PSO algorithm to opti- mize and design the parameters with the target function of chassis performance indexes. And then a simulation experi- ment was provided for the active vehicle chassis control. The results show that using the PID controller optimized by the PSO algorithm, the actively controlled vehicle chassis's performances, such as the vertical acceleration and the dynamic displacement of the suspension, can be greatly improved compared with the chassis controlled by the normal PID controller and the passive one. Meanwhile, the problem of defining the weight matrices is wess solved based on the advantage that the normal PID controller is sufficiently utilized.
出处 《计算机仿真》 CSCD 北大核心 2013年第4期155-158,168,共5页 Computer Simulation
基金 江苏省自然科学基金项目(BK2011367) 江苏省"六大人才高峰"资助项目(SZ2010002)
关键词 悬架 粒子群算法 仿真 Suspension PSO algorithm Simulation
  • 相关文献

参考文献12

  • 1李岱.基于PID控制的主悬架设计及其优化[J].机械设计与制造,2012,25(1):94-80. 被引量:2
  • 2任子武,伞冶,陈俊风.改进PSO算法及在PID参数整定中应用研究[J].系统仿真学报,2006,18(10):2870-2873. 被引量:42
  • 3D P Kwok, F Sheng. Genetic algorithm and simulated annealing for optimal robot arm PID control [ C ]. Proc IEEE Conf. Evol. Comput, Orlando, FL, 1994:707-713. 被引量:1
  • 4王强,麻亮,强文义,傅佩琛.基于改进混合遗传算法的二自由度PID控制器设计与应用[J].控制与决策,2001,16(2):195-198. 被引量:27
  • 5D B Fogel. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence [ M ]. New York : IEEE Press, 2000. 被引量:1
  • 6J Kennedy, R Eberhart. Particle Swarm Optimization [ C ]. Proc. IEEE Int. Conf. Neural Networks, 1995:1942 - 1948. 被引量:1
  • 7R C Eberhart, Shi Yuhui. Comparison between Genetic Algorithms and Particle Swarm Optimization[ C]. Annual Conference on Evo- lutionary Proammin, San Dieto. 1998. 被引量:1
  • 8喻凡,林逸编著..汽车系统动力学[M].北京:机械工业出版社,2008:324.
  • 9陶永华 尹怡欣 葛芦生.新型PID控制及其应用[M].北京:机械工业出版社,2000.. 被引量:80
  • 10Y Sm, R C Eberhart. A modified particle swarm optimizer[ C]. Proc. IEEE Int. Conf. EvO1. Comput, Anchorage, Alaska, May 1998:69 - 73. 被引量:1

二级参考文献27

共引文献181

同被引文献152

引证文献16

二级引证文献153

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部