期刊文献+

基于SVR的宽基线图像匹配方法 被引量:5

Wide baseline image matching using support vector regression
原文传递
导出
摘要 针对宽基线图像匹配处理中的误匹配问题,使用支持向量回归(support vector regression,SVR)方法来解决宽基线图像匹配,采用了一种改进的拓扑过滤器新算法来剔除误匹配。改进拓扑过滤机制匹配大量SIFT(scale-in-variant feature transform)特征,剔除一些误匹配项获得高正确率的初始匹配,实现使用高正确率的初始匹配来构建SVR;同时,基于构建SVR关系给出的预测值附件搜索新的匹配。在宽基线条件下对室内和室外的环境图像进行测试实验,结果表明,该算法能够自动获取大量正确匹配。 Wide baseline matching is solved by using support vector regression(SVR).High correct ratio initial matches are used to train SVR relationships,obtained by matching large-scale SIFT features and discarding some mismatches by the improved topological filtering scheme.And new matches are searched near the prediction given by trained SVR relationships.Both indoor and outdoor environments image pairs under wide baseline condition are tested,and experiment results show that the algorithm automatically gain large numbers of accurate point correspondences.
作者 席海峰 田超
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2013年第2期197-202,共6页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 重庆市自然科学基金(CSTC 2010BB2411) 国家自然科学基金(61102131)~~
关键词 宽基线匹配 剔除误匹配项 拓扑过滤 支持向量回归 wide baseline matching discarding some mismatches topological filtering support vector regression
  • 相关文献

参考文献24

  • 1BAUMBERG A. Reliable feature matching across widely separated views [ C ]//Proc. Int. Conf. Computer Vision and Pattern Recognition. Hilton Head, USA: IEEE Com- puter Society, 2000: 774-781. 被引量:1
  • 2陈冰,赵亦工,李欣.一种新的宽基线图像匹配方法[J].西安电子科技大学学报,2011,38(2):116-123. 被引量:7
  • 3LINDEBERG T. Feature detection with automatic scale selection[ J]. International Journal of Computer Vision, 1998, 30 (2) : 79-116. 被引量:1
  • 4MIKOLAJCZYK K, SCHMID C. Indexing Based on Scale Invariant Interest Points [ C ]//Proc. Int. Conf. Computer Vision Vancouver. Vancouver, BC, Canada:IEEE Com- puter Society, 2001:525-531. 被引量:1
  • 5MIKOLAJCZYK K, SCHMID C. An Affine Invariant In- terest Point Detector[ C ]//Proc. Seventh European Conf. Computer Vision Copenhagen. Copenhagen, Denmark : Springer-Verlag Berlin Heidelberg, 2002: 128-142. 被引量:1
  • 6MATAS J, CHUM O, URBAN M,et al. Robust Wide Baseline Stereo from Maximally Stable Extremal Regions [C]//Proc. 13th British Machine Vision. Cardiff Uni- versity, British: British Machine Vision Association and Society, 2002:384-393. 被引量:1
  • 7MIKOLAJCZYK K, SCHMID C. A Performance Evalua- tion of Local Descriptors [ J ]. IEEE Trans Pattern Anal Mach Intell, 2005, 27(10) :1615-1629. 被引量:1
  • 8HARTLEY R, ZISSERMAN A. Multiple View Geometry in Computer Vision [ M ]. Cambridge, UK : Cambridge University Press, 2000:25-27. 被引量:1
  • 9MYATF D, BISHOP J M, CRADDOCK R. NAPSAC High Noise, High Dimensional Robust Estimation--It' s in the Bag [ C ]// Proc. British Machine Vision. Cardiff University, British: British Machine Vision Association and Society, 2002: 458467. 被引量:1
  • 10FERRARI V, TUYTELAARS T, VAN G L. Wide-base- line Multiple-view Corre-spondences [ J ]. IEEE Comp Vis and Patt Rec, 2003, 1 (2) : 718-725. 被引量:1

二级参考文献74

共引文献26

同被引文献39

  • 1汪松,王俊平,万国挺,王乐.基于SIFT算法的图像匹配方法[J].吉林大学学报(工学版),2013,43(S1):279-282. 被引量:5
  • 2汪强,尹峰,刘钢钦.基于小波的彩色图像融合技术[J].计算机仿真,2005,22(11):201-204. 被引量:9
  • 3Brown L G. A survey of image registration techniques[J]. ACM Computer Surveys, 1992,24 (4) : 325-376. 被引量:1
  • 4Zitova B, Flusser J. Image registration methods: a survey, [J]. Image and Vision Computing,2003,21: 997-1000. 被引量:1
  • 5Lowe D G. Object recognition from local scale invariant fea- tures[C]//International Conference on Computer Vision. Corfu, Greece, 1999 : 1150-1157. 被引量:1
  • 6Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision,2004, 60(2):91- 110. 被引量:1
  • 7Lindeberg T. Feature detection with automatic scale selec- tion[J].InternationalJournal of Computer Vision, 1998,30 (2):79-116. 被引量:1
  • 8Lindeberg T. Scale2space theory in computer vision[M]. The Kluwer International series in engineering and comput- er science, dordrecht.. Kluwer Academy Publishers, Nether- lands, 1994. 被引量:1
  • 9Mei-sen Pan,Jing-tian Tang,Qiu-sheng Rong et al. Medical image registration using modified iterative closest points [J]. International Journal for Numerical Methods in Biomed- ical Engineering,2011,27(8): 1150-1166. 被引量:1
  • 10Chui H and Rangarajan A. A new point matching algorithm for non-rigid registration[J]. Computer Vision and Image Understanding, 2003, 89(2): 114-141. 被引量:1

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部